Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why people with schizophrenia may have trouble reading social cues

25.05.2011
Understanding the actions of other people can be difficult for those with schizophrenia. Vanderbilt University researchers have discovered that impairments in a brain area involved in perception of social stimuli may be partly responsible for this difficulty.

“Misunderstanding social situations and interactions are core deficits in schizophrenia,” said Sohee Park, Gertrude Conaway Professor of Psychology and one of the co-authors on this study. “Our findings may help explain the origins of some of the delusions involving perception and thoughts experienced by those with schizophrenia.”

In findings published in the journal PLoS ONE, the researchers found that a particular brain area, the posterior superior temporal sulcus or STS, appears to be implicated in this deficit.

“Using brain imaging together with perceptual testing, we found that a brain area in a neural network involved in perception of social stimuli responds abnormally in individuals with schizophrenia,” said Randolph Blake, Centennial Professor of Psychology and co-author. “We found this brain area fails to distinguish genuine biological motion from highly distorted versions of that motion.”

The study’s lead author, Jejoong Kim, completed the experiments as part of his dissertation under the supervision of Park and Blake in Vanderbilt’s Department of Psychology. Kim is now conducting research in the Department of Brain and Cognitive Sciences at Seoul National University in Korea, where Blake is currently a visiting professor.

“We have found… that people with schizophrenia tend to ‘see’ living things in randomness and this subjective experience is correlated with an increased activity in the (posterior) STS,” the authors wrote. “In the case of biological motion perception, these self-generated, false impressions of meaning can have negative social consequences, in that schizophrenia patients may misconstrue the actions or intentions of other people.”

In their experiments, the researchers compared the performance of people with schizophrenia to that of healthy controls on two visual tasks. One task involved deciding whether or not an animated series of lights depicted the movements of an actor’s body. The second task entailed judging subtle differences in the actions depicted by two similar animations viewed side by side. On both tasks, people with schizophrenia performed less well than the healthy controls.

fMRI used to i.d. brain area
Next, the researchers measured brain activity using functional magnetic resonance imaging (fMRI) while the subjects—healthy controls and schizophrenia patients—performed a version of the side-by-side task. Once again, the individuals with schizophrenia performed worse on the task. The researchers were then able to correlate those performance deficits with the brain activity in each person.

The fMRI results showed strong activation of the posterior portion of the STS in the healthy controls when they were shown biological motion. In the individuals with schizophrenia, STS activity remained relatively constant and high regardless of what was presented to them.

Analysis of the brain activity of the schizophrenia patients also showed high STS activity on trials where they reported seeing biological motion, regardless of whether the stimulus itself was biological or not.

For reasons yet to be discovered, area STS in schizophrenia patients fails to differentiate normal human activity from non-human motion, leading Kim and colleagues to surmise that this abnormal brain activation contributes to the patients’ difficulties reading social cues portrayed by the actions of others.

The research was funded with support from the Brain and Behavior Research Foundation (formerly the National Alliance for Research on Schizophrenia and Depression) and the National Research Foundation of Korea in the Korean Ministry of Education, Science and Technology.

Contact:
Melanie Moran, (615) 322-NEWS
melanie.moran@vanderbilt.edu

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu
http://www.youtube.com/watch?v=VzqeUZ-SccM
http://www.youtube.com/watch?v=_qKY-6oeYDA

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>