Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathways to Deep Decarbonization in Germany

02.09.2015

Study shows how Germany can decarbonize its energy system and reduce greenhouse gas emissions by more than 80% until 2050

In order to take an important step towards limiting global warming to less than 2 °C compared to pre-industrial times, countries are expected to achieve a new international agreement on the climate at the UN climate conference in Paris at the end of the year. According to climate science, this target can only be obtained if global net greenhouse gas (GHG) emissions approach zero by the second half of the century.

Against this background, the Deep Decarbonization Pathways Project (DDPP), coordinated by the Institute for Sustainable Development and International Relations (IDDRI) and the Sustainable Development Solutions Network (SDSN) set by the United Nations Secretary General, emerged in 2013.

The Deep Decarbonization Pathways Project (DDPP) is a collaborative global initiative led by IDDRI and SDSN that aims to demonstrate how individual countries can transition to a low-carbon economy preferably consistent with the internationally agreed target of limiting the increase in global temperature to less than 2°C.

Achieving this target will require a profound transformation of energy systems by mid-century, a "deep decarbonization". The project comprises 16 research teams composed of leading institutions from the world's largest GHG emitting countries: Australia, Brazil, Canada, China, France, Germany India, Indonesia, Italy, Japan, Mexico, Russia, South Africa, South Korea, United Kingdom, and United States.

Each team is exploring what is required to achieve this transformation in their own country's economy while taking into account socio-economic conditions, development aspirations, infrastructure stocks, natural resource endowments, and other relevant factors.

The now published DDPP country study for Germany explores what is required to achieve deep decarbonization in Germany. It has been conducted by the Wuppertal Institute for Climate, Environment and Energy, with the support of Stiftung Mercator. The study discusses how the German government's target of reducing domestic GHG emissions by 80 to 95% by 2050 (versus 1990) can be reached.

Potential pathways to deep decarbonization in Germany have been comparatively analyzed by means of a discussion of GHG mitigation scenarios currently available for Germany. The analysis shows that there are three “key strategies” which strongly contribute to GHG emission reduction in almost every scenario:

- Strong energy efficiency improvements, i.e. reduced energy input but steady output in all end-use sectors (residential, services, industry and transport sector)

- Increased use of domestic renewable energy sources (especially higher electricity production from wind and solar power plants)

- Extensive electrification of processes (e.g. electricity-based heat supply, electric vehicles) and use of renewable electricity-based synthetic gases/fuels (power to gas/fuels) in the medium to long term

In the last two decades, Germany has proven quite successful in the dissemination of renewable energy sources. This momentum needs to be maintained and further progress achieved. In contrast, energy efficiency improvements have so far fallen short of their potentials.

In order to be able to provide adequate framework conditions for energy efficiency improvements, this strategy needs to be focused on by policymakers within the coming years. A widespread electrification of processes requires structural changes which can only be achieved after the necessary preconditions (e.g. high share of electricity from renewable energy sources) have been created.

Realizing deep decarbonization, however, requires a successful implementation of additional strategies. In order to achieve a GHG reduction of 90% or more by 2050, especially the following can be employed:

- Final energy demand reductions through behavioral changes (modal shift in transport, changes in eating and heating habits etc.)

- Net imports of electricity from renewable sources or import of bioenergy
Use of carbon capture and storage technology (CCS) to reduce industry sector GHG emissions

- Reduction in non-CO2 emissions, especially in agriculture and industry

A successful implementation of GHG mitigation strategies is linked to significant challenges which need to be overcome jointly by politics and society. As Prof. Dr. Manfred Fischedick, Vice-President of the Wuppertal Institute, puts it: "Deep decarbonization is not possible without adequate political, institutional, cultural and social framework conditions". It appears to be particularly important to keep investment conditions stable, to increase the possibility for public participation and to ensure public acceptance for the required infrastructure projects.

The study shows that achieving decarbonization cannot be achieved in a one-time effort but requires consistent political and societal action over several decades. Prof. Fischedick underlines that "continuous commitment appears to be feasible only if we stop focussing on potential short-term disadvantages of the transition to a low-carbon energy system. We need to emphasize the fact that the implementation of decarbonization measures is not only beneficial for achieving domestic GHG reduction targets but also leads to significant additional advantages for society in other areas. Not only can such measures stimulate decarbonization efforts in other countries, but positive effects also occur locally, e.g. in the form of better air quality, increased innovation dynamics and export opportunities for companies. This should ultimately provide enough momentum for ambitious and courageous political action in Germany and worldwide".

You find a summary at the project information site of the Wuppertal Institute’s homepage http://wupperinst.org/en/projects/details/wi/p/s/pd/505/. The complete study is available on the website of the Deep Decarbonization Pathways Project (DDPP) http://deepdecarbonization.org.

Press release by Wuppertal Institute for Climate, Environment and Energy
Responsible: Prof. Dr. Uwe Schneidewind, President
Contact: Dorle Riechert, Public Relations
Tel. +49 202 2492-180, Fax +49 202 2492-108
E-mail: dorle.riechert@wupperinst.org

Dorle Riechert | idw - Informationsdienst Wissenschaft
Further information:
http://www.wupperinst.org

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>