Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathways to Deep Decarbonization in Germany

02.09.2015

Study shows how Germany can decarbonize its energy system and reduce greenhouse gas emissions by more than 80% until 2050

In order to take an important step towards limiting global warming to less than 2 °C compared to pre-industrial times, countries are expected to achieve a new international agreement on the climate at the UN climate conference in Paris at the end of the year. According to climate science, this target can only be obtained if global net greenhouse gas (GHG) emissions approach zero by the second half of the century.

Against this background, the Deep Decarbonization Pathways Project (DDPP), coordinated by the Institute for Sustainable Development and International Relations (IDDRI) and the Sustainable Development Solutions Network (SDSN) set by the United Nations Secretary General, emerged in 2013.

The Deep Decarbonization Pathways Project (DDPP) is a collaborative global initiative led by IDDRI and SDSN that aims to demonstrate how individual countries can transition to a low-carbon economy preferably consistent with the internationally agreed target of limiting the increase in global temperature to less than 2°C.

Achieving this target will require a profound transformation of energy systems by mid-century, a "deep decarbonization". The project comprises 16 research teams composed of leading institutions from the world's largest GHG emitting countries: Australia, Brazil, Canada, China, France, Germany India, Indonesia, Italy, Japan, Mexico, Russia, South Africa, South Korea, United Kingdom, and United States.

Each team is exploring what is required to achieve this transformation in their own country's economy while taking into account socio-economic conditions, development aspirations, infrastructure stocks, natural resource endowments, and other relevant factors.

The now published DDPP country study for Germany explores what is required to achieve deep decarbonization in Germany. It has been conducted by the Wuppertal Institute for Climate, Environment and Energy, with the support of Stiftung Mercator. The study discusses how the German government's target of reducing domestic GHG emissions by 80 to 95% by 2050 (versus 1990) can be reached.

Potential pathways to deep decarbonization in Germany have been comparatively analyzed by means of a discussion of GHG mitigation scenarios currently available for Germany. The analysis shows that there are three “key strategies” which strongly contribute to GHG emission reduction in almost every scenario:

- Strong energy efficiency improvements, i.e. reduced energy input but steady output in all end-use sectors (residential, services, industry and transport sector)

- Increased use of domestic renewable energy sources (especially higher electricity production from wind and solar power plants)

- Extensive electrification of processes (e.g. electricity-based heat supply, electric vehicles) and use of renewable electricity-based synthetic gases/fuels (power to gas/fuels) in the medium to long term

In the last two decades, Germany has proven quite successful in the dissemination of renewable energy sources. This momentum needs to be maintained and further progress achieved. In contrast, energy efficiency improvements have so far fallen short of their potentials.

In order to be able to provide adequate framework conditions for energy efficiency improvements, this strategy needs to be focused on by policymakers within the coming years. A widespread electrification of processes requires structural changes which can only be achieved after the necessary preconditions (e.g. high share of electricity from renewable energy sources) have been created.

Realizing deep decarbonization, however, requires a successful implementation of additional strategies. In order to achieve a GHG reduction of 90% or more by 2050, especially the following can be employed:

- Final energy demand reductions through behavioral changes (modal shift in transport, changes in eating and heating habits etc.)

- Net imports of electricity from renewable sources or import of bioenergy
Use of carbon capture and storage technology (CCS) to reduce industry sector GHG emissions

- Reduction in non-CO2 emissions, especially in agriculture and industry

A successful implementation of GHG mitigation strategies is linked to significant challenges which need to be overcome jointly by politics and society. As Prof. Dr. Manfred Fischedick, Vice-President of the Wuppertal Institute, puts it: "Deep decarbonization is not possible without adequate political, institutional, cultural and social framework conditions". It appears to be particularly important to keep investment conditions stable, to increase the possibility for public participation and to ensure public acceptance for the required infrastructure projects.

The study shows that achieving decarbonization cannot be achieved in a one-time effort but requires consistent political and societal action over several decades. Prof. Fischedick underlines that "continuous commitment appears to be feasible only if we stop focussing on potential short-term disadvantages of the transition to a low-carbon energy system. We need to emphasize the fact that the implementation of decarbonization measures is not only beneficial for achieving domestic GHG reduction targets but also leads to significant additional advantages for society in other areas. Not only can such measures stimulate decarbonization efforts in other countries, but positive effects also occur locally, e.g. in the form of better air quality, increased innovation dynamics and export opportunities for companies. This should ultimately provide enough momentum for ambitious and courageous political action in Germany and worldwide".

You find a summary at the project information site of the Wuppertal Institute’s homepage http://wupperinst.org/en/projects/details/wi/p/s/pd/505/. The complete study is available on the website of the Deep Decarbonization Pathways Project (DDPP) http://deepdecarbonization.org.

Press release by Wuppertal Institute for Climate, Environment and Energy
Responsible: Prof. Dr. Uwe Schneidewind, President
Contact: Dorle Riechert, Public Relations
Tel. +49 202 2492-180, Fax +49 202 2492-108
E-mail: dorle.riechert@wupperinst.org

Dorle Riechert | idw - Informationsdienst Wissenschaft
Further information:
http://www.wupperinst.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>