Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear and coal-fired electrical plants vulnerable to climate change

04.06.2012
Warmer water and reduced river flows in the United States and Europe in recent years have led to reduced production, or temporary shutdown, of several thermoelectric power plants. For instance, the Browns Ferry Nuclear Plant in Alabama had to shut down more than once last summer because the Tennessee River's water was too warm to use it for cooling.
A study by European and University of Washington scientists published today in Nature Climate Change projects that in the next 50 years warmer water and lower flows will lead to more such power disruptions. The authors predict that thermoelectric power generating capacity from 2031 to 2060 will decrease by between 4 and 16 percent in the U.S. and 6 to 19 percent in Europe due to lack of cooling water. The likelihood of extreme drops in power generation—complete or almost-total shutdowns—is projected to almost triple.

"This study suggests that our reliance on thermal cooling is something that we're going to have to revisit," said co-author Dennis Lettenmaier, a UW professor of civil and environmental engineering.

Thermoelectric plants, which use nuclear or fossil fuels to heat water into steam that turns a turbine, supply more than 90 percent of U.S. electricity and account for 40 percent of the nation's freshwater usage. In Europe, these plants supply three-quarters of the electricity and account for about half of the freshwater use.

While much of this water is "recycled," the power plants rely on consistent volumes of water, at a particular temperature, to prevent the turbines from overheating.

Reduced water availability and warmer water, caused by increasing air temperatures associated with climate change, mean higher electricity costs and less reliability.

While plants with cooling towers will be affected, results show older plants that rely on "once-through cooling" are the most vulnerable. These plants pump water directly from rivers or lakes to cool the turbines before returning the water to its source, and require high flow volumes.

The study projects the most significant U.S. effects at power plants situated inland on major rivers in the Southeast that use once-through cooling, such as the Browns Ferry plant in Alabama and the New Madrid coal-fired plant in southeastern Missouri.
"The worst-case scenarios in the Southeast come from heat waves where you need the power for air conditioning," Lettenmaier said. "If you have really high power demand and the river temperature's too high so you need to shut your power plant down, you have a problem."

The study used hydrological and water temperature models developed by Lettenmaier and co-author John Yearsley, a UW affiliate professor of civil and environmental engineering. The European authors combined these with an electricity production model and considered two climate-change scenarios: one with modest technological change and one that assumed a rapid transition to renewable energy. The range of projected impacts to power systems covers both scenarios.

The U.S. and Europe both have strict environmental standards for the volume of water withdrawn by plants and the temperature of the water discharged. Warm periods coupled with low river flows could thus lead to more conflicts between environmental objectives and energy production.

Discharging water at elevated temperatures causes yet another problem: downstream thermal pollution.

"Higher electricity prices and disruption to supply are significant concerns for the energy sector and consumers, but another growing concern is the environmental impact of increasing water temperatures on river ecosystems, affecting, for example, life cycles of aquatic organisms," said first author Michelle van Vliet, a doctoral student at the Wageningen University and Research Centre in the Netherlands.

Given the high costs and the long lifetime of power plants, the authors say, such long-range projections are important to let the electricity sector adapt to changes in the availability of cooling water and plan infrastructure investments accordingly.

One adaptation strategy would be to reduce reliance on freshwater sources and place the plants near saltwater, according to corresponding author Pavel Kabat, director of the International Institute for Applied Systems Analysis in Austria and van Vliet's doctoral adviser.

"However, given the life expectancy of power plants and the inability to relocate them to an alternative water source, this is not an immediate solution, but should be factored into infrastructure planning," he said. "Another option is to switch to new gas-fired power plants that are both more efficient than nuclear- or fossil-fuel-power plants and that also use less water."

The study was supported by the European Commission.
Other co-authors are Fulco Ludwig at Wageningen University and Stefan Vögele at the Institute of Energy and Climate Research in Germany.

For more information:
Contact Lettenmaier at 206-543-2532 or dennisl@uw.edu;
van Vliet at + 31 (0)317 487755, + 31 (0)6 43007169 or michelle.vanvliet@wur.nl;
and Kabat at +43 (0) 2236 807 402 or kabat@iiasa.ac.at

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>