Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nonsense in our genes

06.02.2009
1 in 200 human genes superfluous?

1 in 200 of our human genes can be inactivated with no detectable effect on our health. A study by Wellcome Trust Sanger Institute scientists raises new questions about the effects of gene loss on our wellbeing and evolution.

The study, published today in The American Journal of Human Genetics, explores single letter changes in our genetic code that affect the ability of genes to produce proteins. The researchers' findings suggest that such mutations, while sometimes harmful, generally have little consequence for the individual and may occasionally even be beneficial in evolutionary terms.

The team studied variations in the genetic code of more than 1000 people from around the world. They focused their work on single-letter changes (called SNPs) that disrupt proteins, leading to versions that are either shorter or completely absent. One might intuitively expect that such a change - called a nonsense-SNP - would be harmful to the person.

"We knew that these mutations existed and that many have been associated with genetic diseases, but we were amazed to find that they were so common in the general population," said Bryndis Yngvadottir, lead author on the study. "We found that 167 genes could be inactivated by nonsense mutations, and that individuals carry on average at least 46 such variations. For 99 of the genes, both copies could be lost in adults living a normal existence."

Human DNA contains approximately 20,000 genes: the total of 99 genes with nonsense-SNPs means that at least 1 in 200 genes is dispensable. Some harmful nonsense-SNPs were also present among the 167 genes studied: 8 are listed in the Human Gene Mutation Database which catalogues disease-causing mutations.

While the researchers found that inactivating genes was, on the whole, slightly harmful, there were exceptions. In East Asia, but not in other places, it seems to have been advantageous to lose the MAGEE2 gene.

"There is a theory that 'less is more' where genes are concerned" explained the study's coordinator, Chris Tyler-Smith, "and we already knew of a couple of examples of advantageous gene loss. But this is the first large-scale investigation of its significance for recent human evolution.

"The MAGEE2 gene is an interesting new example, although we have absolutely no idea what this gene does, or why some people are better off without it. However, our study suggests that overall, gene loss has not been a major evolutionary force: our genome does not seem to be in a hurry to get rid of these 'superfluous' genes."

"Certain types of genes tend to be lost preferentially. We found the biggest decrease in the genes that contribute to our sense of smell. Perhaps early humans didn't like smelly partners, and so when humans started to live together in big groups it helped their chances of finding true love if they couldn't smell their partner too strongly," speculated Bryndis Yngvadottir.

Genetic variation in nonsense-SNP numbers was significant: participants in the survey had between 29 and 65 of these mutations each and varied on average by 24 genes as a consequence. 18 of the 169 nonsense-SNPs investigated are also present in the Craig Venter genome published last year.

Don Powell | EurekAlert!
Further information:
http://www.sanger.ac.uk
http://www.sanger.ac.uk/Teams/Team19/
http://www.hgmd.cf.ac.uk/ac/index.php

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>