Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen from pollution, natural sources causes growth of toxic algae, study finds

07.02.2013
Nitrogen in ocean waters fuels the growth of two tiny but toxic phytoplankton species that are harmful to marine life and human health, warns a new study published in the Journal of Phycology.

Researchers from San Francisco State University found that nitrogen entering the ocean -- whether through natural processes or pollution -- boosts the growth and toxicity of a group of phytoplankton that can cause the human illness Amnesic Shellfish Poisoning.


This is a scanning electron micrograph of the phytoplankton species Pseudo-nitzschia cuspidata (the long, thin needle-like objects).

Credit: Brian Bill/NOAA

Commonly found in marine waters off the North American West Coast, these diatoms (phytoplankton cells) of the Pseudo-nitzschia genus produce a potent toxin called domoic acid. When these phytoplankton grow rapidly into massive blooms, high concentrations of domoic acid put human health at risk if it accumulates in shellfish. It can also cause death and illness among marine mammals and seabirds that eat small fish that feed on plankton.

"Regardless of its source, nitrogen has a powerful impact on the growth of phytoplankton that are the foundation of the marine food web, irrespective of whether they are toxic or not," said William Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies. "Scientists and regulators need to be aware of the implications of both natural and pollutant sources of nitrogen entering the sea."

Nitrogen can occur naturally in marine waters due to coastal upwelling, which draws cool, nutrient-rich water containing nitrate (the most stable form of nitrogen) from deeper depths into sunlit surface waters. Pollution, including agricultural runoff containing fertilizer and effluent from sewage plants, is also responsible for adding nitrogen, including ammonium and urea, to ocean waters, but in most regions these types of nitrogen occur at relatively low concentrations.

In laboratory studies, Cochlan and former graduate student Maureen Auro found that natural and pollution-caused nitrogen forms equally support the growth of the harmful Pseudo-nitzschia algae and cause the production of the domoic acid, but in all cases the natural form of nitrogen caused the most toxic cells.

They also found that these small diatoms became particularly toxic under low light levels – a condition that usually slows the growth of phytoplankton. The species, P. cuspidata, underwent an up to 50 fold increase in toxicity under low light levels compared to the conditions that are thought to normally favor phytoplankton growth.

Scientists already know that in some large-celled species of Pseudo-nitzschia their toxicity increases when the cells grow slower, but in previous studies the slowing of cellular growth was due to the limitation of vital nutrients, such as silicate. However Cochlan's latest study found that the toxicity of these small toxigenic diatoms is affected by the type of nitrogen they consume. He found that under low light levels -- leading to slow growth -- phytoplankton cells that were fed on naturally occurring nitrate were more toxic than cells that were fed on either urea or ammonium caused by pollution.

"Our results demonstrate that the reason for the growth of these specific harmful algal blooms off the coast of North America from British Columbia to California may in fact be due to totally natural causes," Cochlan said.

Such toxic algal blooms may be largely supported by the natural upwelling of nitrogen. However, Cochlan cautions that when the pattern of upwelling is weaker, nitrogen from pollution could play an important role in sustaining a "seed population" of harmful algae – a remnant that keeps the bloom going until upwelling resumes and the bloom is able to grow again and perhaps increase their toxic effect on the marine ecosystem.

"This is the first physiological study to look at the environmental conditions that promote both the growth and the toxicity of these small diatoms," Cochlan said. "The findings may shed light on why these microorganisms produce a potent neurotoxin and what the ecological advantage is for the phytoplankton producing it."

"Nitrogen Utilization and Toxin Production by Two Diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana," was published in the February 2013 issue of the Journal of Phycology. The paper was authored by Maureen E. Auro, a graduate of the marine biology master's program at SF State, and William P. Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies.

The study was funded by the National Science Foundation's Ecology and Oceanography of Harmful Algal Blooms program (ECOHAB).

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>