Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen loss threatens desert plant life

10.11.2009
As the climate gets warmer, arid soils lose nitrogen as gas, reports a new Cornell study. That could lead to deserts with even less plant life than they sustain today, say the researchers.

"This is a way that nitrogen is lost from an ecosystem that people have never accounted for before," said Jed Sparks, associate professor of ecology and evolutionary biology and co-author of the study, published in the Nov. 6 issue of Science. "It allows us to finally understand the dynamics of nitrogen in arid systems"

Available nitrogen is second only to water as the biggest constraint to biological activity in arid ecosystems, but before now, ecologists struggled to understand how the inputs and outputs of nitrogen in deserts balance.

By showing that the higher temperatures cause nitrogen to escape as gas from desert soils, the Cornell researchers have balanced the nitrogen budget in deserts. They stress that most climate change models need to be altered to consider these findings.

Sparks and lead author Carmody McCalley, a graduate student, warn that temperature increases and shifting precipitation patterns due to climate change may lead to further nitrogen losses in arid ecosystems. That would make arid soils even more infertile and unable to support most plant life, McCalley warned. Although, some climate models predict more summer rainfall for desert areas, the water, when combined with heat, would greatly increase nitrogen losses, she added.

"We're on a trajectory where plant life in arid ecosystems could cease to do well," she said.

In the past, researchers focused on biological mechanisms where soil microbes near the surface produce nitrogen gas that dissipates into the air, but McCalley and Sparks found that non-biological processes (abiotic) play a bigger role in nitrogen losses. They used instruments sensitive enough to measure levels of nitrogen gases in parts per trillion that had never before been applied to soil measurements.

The researchers covered small patches of soil in the Mojave Desert with sealed containers to measure nitrogen oxide (NO), NOy (a group of more than 25 different compounds containing oxidized nitrogen) and ammonia gases that escape from desert soils. To rule out the role of light in this process, McCalley kept light constant but varied the temperatures in lab experiments.

"At 40 to 50 degrees Celsius [about 100-120 F], we found rapid increases in gases coming out of the soil" regardless of the light, McCalley said. Midday ground temperatures average about 150 F and can reach almost 200 F in the Mojave Desert.

"Any place that gets hot and dry, in all parts of the world, will likely exhibit this pattern," said Sparks.

In addition, the researchers note, more nitrogen oxides in the lower atmosphere creates ozone near the ground, which contributes to air pollution and increases the greenhouse effect that warms the planet.

With deserts accounting for 35 to 40 percent of the Earth's surface and arid and semiarid lands being the most likely areas for new human settlements, air quality issues, loss of soil fertility and further desertification need to be considered as the climate warms, the researchers said.

The researchers also point out that most climate modelers now use algorithms that only consider biological factors to predict nitrogen gases coming from soils.

"The code in climate models would have to change to account for abiotic impacts on this part of the nitrogen budget," McCalley concluded.

The research was support in part by the National Science Foundation and Cornell's Andrew Mellon Student Research Grants.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>