Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study first to predict which oil and gas wells are leaking methane

21.12.2018

Each year brings new research showing that oil and natural gas wells leak significant amounts of the potent greenhouse gas methane.

A new study just published in the journal Environmental Geosciences is the first to offer a profile of which wells are the most likely culprits.


A new study to published in Environmental Geosciences is the first to offer a profile of which oil and natural wells are most likely to be leaking methane. Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates.

Credit: Gerry Dincher

The research, conducted by George Pinder of the University of Vermont and James Montague, a former doctoral student at the university, is based on a study of 38,391 natural gas and oil wells in Alberta, Canada.

Companies in that province are required to test wells at the time they begin operating, to determine if they have failed and are leaking methane, and to keep careful records of each well's construction characteristics.

The study used a machine learning algorithm to correlate wells that leaked and those that didn't with a set of 16 characteristics.

The analysis yielded a cluster of traits that was predictive of whether a well would fail and leak, highlighted by three:

  • wells that deviated from a vertical drill line;
  • older wells, drilled before modern drilling practices were put in place; and
  • wells with greater circumferences, whose larger casings required larger volumes of cement that increased the likelihood of voids.

For a subset of 4,024 wells for which the algorithm had access to more complete information, including the fluid properties of the oil or natural gas being mined, the researchers were able to identify leaking wells with 87 percent accuracy.

For a larger sample of 28,534 wells, where the fluid property was not known and taken into account, 62 percent of leaking wells were identified accurately.

"The big picture," Pinder said of the study's findings, "is that we can now have tool that could help us much more efficiently identify leaking wells. Given that methane is such a significant contributor to global warming, this is powerful information that should be put to use."

"Provincial and state regulatory agencies never have enough inspectors or financial resources to locate, let alone repair, leaking wells," said A. R. Ingraffea, the Dwight C. Baum Professor of Engineering Emeritus at Cornell and an expert in oil and natural gas well design and construction, who was not involved in the study.

"The methodology created by this research will be invaluable to those agencies because they can now focus inspections on wells most likely to be leaking now or to leak in the future."

The findings also shed light on how new wells should be designed and constructed to minimize the chance that they will leak, Pinder said.

About 12.5 percent of the wells in the Alberta database were leaking at the time they were to become operational. More research is needed to look at methane leaks over time as wells age, said Montague, the study's lead author.

"The failure rate is likely to underestimate the number of wells that will eventually fail and leak, given the clear possibility that they will degrade with age," he said.

Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates, offsetting much of the climate benefits of burning natural gas instead of coal.

Methane is a highly potent greenhouse gas, with more than 90 times the climate warming impact of carbon dioxide over the first 20 years after it is released.

Under the Trump administration, the Environmental Protection Agency has proposed reducing the monitoring of oil and natural gas wells for methane leaks and has created a variety of exemptions for regulation.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

More articles from Studies and Analyses:

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Autonomous Agriculture in 2045?
15.11.2019 | Fraunhofer-Institut für Experimentelles Software Engineering IESE

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>