Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study first to predict which oil and gas wells are leaking methane

21.12.2018

Each year brings new research showing that oil and natural gas wells leak significant amounts of the potent greenhouse gas methane.

A new study just published in the journal Environmental Geosciences is the first to offer a profile of which wells are the most likely culprits.


A new study to published in Environmental Geosciences is the first to offer a profile of which oil and natural wells are most likely to be leaking methane. Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates.

Credit: Gerry Dincher

The research, conducted by George Pinder of the University of Vermont and James Montague, a former doctoral student at the university, is based on a study of 38,391 natural gas and oil wells in Alberta, Canada.

Companies in that province are required to test wells at the time they begin operating, to determine if they have failed and are leaking methane, and to keep careful records of each well's construction characteristics.

The study used a machine learning algorithm to correlate wells that leaked and those that didn't with a set of 16 characteristics.

The analysis yielded a cluster of traits that was predictive of whether a well would fail and leak, highlighted by three:

  • wells that deviated from a vertical drill line;
  • older wells, drilled before modern drilling practices were put in place; and
  • wells with greater circumferences, whose larger casings required larger volumes of cement that increased the likelihood of voids.

For a subset of 4,024 wells for which the algorithm had access to more complete information, including the fluid properties of the oil or natural gas being mined, the researchers were able to identify leaking wells with 87 percent accuracy.

For a larger sample of 28,534 wells, where the fluid property was not known and taken into account, 62 percent of leaking wells were identified accurately.

"The big picture," Pinder said of the study's findings, "is that we can now have tool that could help us much more efficiently identify leaking wells. Given that methane is such a significant contributor to global warming, this is powerful information that should be put to use."

"Provincial and state regulatory agencies never have enough inspectors or financial resources to locate, let alone repair, leaking wells," said A. R. Ingraffea, the Dwight C. Baum Professor of Engineering Emeritus at Cornell and an expert in oil and natural gas well design and construction, who was not involved in the study.

"The methodology created by this research will be invaluable to those agencies because they can now focus inspections on wells most likely to be leaking now or to leak in the future."

The findings also shed light on how new wells should be designed and constructed to minimize the chance that they will leak, Pinder said.

About 12.5 percent of the wells in the Alberta database were leaking at the time they were to become operational. More research is needed to look at methane leaks over time as wells age, said Montague, the study's lead author.

"The failure rate is likely to underestimate the number of wells that will eventually fail and leak, given the clear possibility that they will degrade with age," he said.

Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates, offsetting much of the climate benefits of burning natural gas instead of coal.

Methane is a highly potent greenhouse gas, with more than 90 times the climate warming impact of carbon dioxide over the first 20 years after it is released.

Under the Trump administration, the Environmental Protection Agency has proposed reducing the monitoring of oil and natural gas wells for methane leaks and has created a variety of exemptions for regulation.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

More articles from Studies and Analyses:

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

nachricht When a fish becomes fluid
17.12.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>