Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study first to predict which oil and gas wells are leaking methane

21.12.2018

Each year brings new research showing that oil and natural gas wells leak significant amounts of the potent greenhouse gas methane.

A new study just published in the journal Environmental Geosciences is the first to offer a profile of which wells are the most likely culprits.


A new study to published in Environmental Geosciences is the first to offer a profile of which oil and natural wells are most likely to be leaking methane. Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates.

Credit: Gerry Dincher

The research, conducted by George Pinder of the University of Vermont and James Montague, a former doctoral student at the university, is based on a study of 38,391 natural gas and oil wells in Alberta, Canada.

Companies in that province are required to test wells at the time they begin operating, to determine if they have failed and are leaking methane, and to keep careful records of each well's construction characteristics.

The study used a machine learning algorithm to correlate wells that leaked and those that didn't with a set of 16 characteristics.

The analysis yielded a cluster of traits that was predictive of whether a well would fail and leak, highlighted by three:

  • wells that deviated from a vertical drill line;
  • older wells, drilled before modern drilling practices were put in place; and
  • wells with greater circumferences, whose larger casings required larger volumes of cement that increased the likelihood of voids.

For a subset of 4,024 wells for which the algorithm had access to more complete information, including the fluid properties of the oil or natural gas being mined, the researchers were able to identify leaking wells with 87 percent accuracy.

For a larger sample of 28,534 wells, where the fluid property was not known and taken into account, 62 percent of leaking wells were identified accurately.

"The big picture," Pinder said of the study's findings, "is that we can now have tool that could help us much more efficiently identify leaking wells. Given that methane is such a significant contributor to global warming, this is powerful information that should be put to use."

"Provincial and state regulatory agencies never have enough inspectors or financial resources to locate, let alone repair, leaking wells," said A. R. Ingraffea, the Dwight C. Baum Professor of Engineering Emeritus at Cornell and an expert in oil and natural gas well design and construction, who was not involved in the study.

"The methodology created by this research will be invaluable to those agencies because they can now focus inspections on wells most likely to be leaking now or to leak in the future."

The findings also shed light on how new wells should be designed and constructed to minimize the chance that they will leak, Pinder said.

About 12.5 percent of the wells in the Alberta database were leaking at the time they were to become operational. More research is needed to look at methane leaks over time as wells age, said Montague, the study's lead author.

"The failure rate is likely to underestimate the number of wells that will eventually fail and leak, given the clear possibility that they will degrade with age," he said.

Research published in June in Science estimated that natural gas wells are leaking 13 million metric tons of methane each year, 60 percent higher that EPA estimates, offsetting much of the climate benefits of burning natural gas instead of coal.

Methane is a highly potent greenhouse gas, with more than 90 times the climate warming impact of carbon dioxide over the first 20 years after it is released.

Under the Trump administration, the Environmental Protection Agency has proposed reducing the monitoring of oil and natural gas wells for methane leaks and has created a variety of exemptions for regulation.

Media Contact

Jeff Wakefield
jeffrey.wakefield@uvm.edu
802-578-8830

 @uvmvermont

http://www.uvm.edu 

Jeff Wakefield | EurekAlert!

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>