Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study discovers biological basis for magic mushroom 'mind expansion'

03.07.2014

New research shows that our brain displays a similar pattern of activity during dreams as it does during a mind-expanding drug trip.

Psychedelic drugs such as LSD and magic mushrooms can profoundly alter the way we experience the world but little is known about what physically happens in the brain. New research, published in Human Brain Mapping, has examined the brain effects of the psychedelic chemical in magic mushrooms, called 'psilocybin,' using data from brain scans of volunteers who had been injected with the drug.

The study found that under psilocybin, activity in the more primitive brain network linked to emotional thinking became more pronounced, with several different areas in this network - such as the hippocampus and anterior cingulate cortex - active at the same time.

This pattern of activity is similar to the pattern observed in people who are dreaming. Conversely, volunteers who had taken psilocybin had more disjointed and uncoordinated activity in the brain network that is linked to high-level thinking, including self-consciousness.

... more about:
»Brain »LSD »Medicine »consciousness »drugs »mushroom »networks

Psychedelic drugs are unique among other psychoactive chemicals in that users often describe 'expanded consciousness,' including enhanced associations, vivid imagination and dream-like states. To explore the biological basis for this experience, researchers analysed brain imaging data from 15 volunteers who were given psilocybin intravenously while they lay in a functional magnetic resonance imaging (fMRI) scanner. Volunteers were scanned under the influence of psilocybin and when they had been injected with a placebo

"What we have done in this research is begin to identify the biological basis of the reported mind expansion associated with psychedelic drugs," said Dr. Robin Carhart-Harris from the Department of Medicine, Imperial College London.

"I was fascinated to see similarities between the pattern of brain activity in a psychedelic state and the pattern of brain activity during dream sleep, especially as both involve the primitive areas of the brain linked to emotions and memory. People often describe taking psilocybin as producing a dreamlike state and our findings have, for the first time, provided a physical representation for the experience in the brain."

The new study examined variation in the amplitude of fluctuations in what is called the blood-oxygen level dependent (BOLD) signal, which tracks activity levels in the brain. This revealed that activity in important brain networks linked to high-level thinking in humans becomes unsynchronised and disorganised under psilocybin. One particular network that was especially affected plays a central role in the brain, essentially 'holding it all together', and is linked to our sense of self.

In comparison, activity in the different areas of a more primitive brain network became more synchronised under the drug, indicating they were working in a more co-ordinated, 'louder' fashion. The network involves areas of the hippocampus, associated with memory and emotion, and the anterior cingulate cortex which is related to states of arousal.

Lead author Dr Enzo Tagliazucchi from Goethe University, Germany said: "A good way to understand how the brain works is to perturb the system in a marked and novel way. Psychedelic drugs do precisely this and so are powerful tools for exploring what happens in the brain when consciousness is profoundly altered. It is the first time we have used these methods to look at brain imaging data and it has given some fascinating insight into how psychedelic drugs expand the mind. It really provides a window through which to study the doors of perception."

Dr. Carhart-Harris added: "Learning about the mechanisms that underlie what happens under the influence of psychedelic drugs can also help to understand their possible uses. We are currently studying the effect of LSD on creative thinking and we will also be looking at the possibility that psilocybin may help alleviate symptoms of depression by allowing patients to change their rigidly pessimistic patterns of thinking. Psychedelics were used for therapeutic purposes in the 1950's and 1960's but now we are finally beginning to understand their action in the brain and how this can inform how to put them to good use."

The data was originally collected at Imperial College London in 2012 by a research group led by Dr. Carhart-Harris and Professor David Nutt from the Department of Medicine, Imperial College London. Initial results revealed a variety of changes in the brain associated with drug intake. To explore the data further Dr. Carhart-Harris recruited specialists in the mathematical modelling of brain networks, Professor Dante Chialvo and Dr Enzo Tagliazucchi to investigate how psilocybin alters brain activity to produce its unusual psychological effects.

As part of the new study, the researchers applied a measure called entropy. This was originally developed by physicists to quantify lost energy in mechanical systems, such as a steam engine, but entropy can also be used to measure the range or randomness of a system. For the first time, researchers computed the level of entropy for different networks in the brain during the psychedelic state.

This revealed a remarkable increase in entropy in the more primitive network, indicating there was an increased number of patterns of activity that were possible under the influence of psilocybin. It seemed the volunteers had a much larger range of potential brain states that were available to them, which may be the biophysical counterpart of 'mind expansion' reported by users of psychedelic drugs.

Previous research has suggested that there may be an optimal number of dynamic networks active in the brain, neither too many nor too few. This may provide evolutionary advantages in terms of optimizing the balance between the stability and flexibility of consciousness. The mind works best at a critical point when there is a balance between order and disorder and the brain maintains this optimal number of networks. However, when the number goes above this point, the mind tips into a more chaotic regime where there are more networks available than normal. Collectively, the present results suggest that psilocybin can manipulate this critical operating point.

###

The research was funded and intellectually supported by the Beckley Foundation. Professor Chialvo is from the Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Argentina and Dr Tagliazucchi is based at Goethe University, Germany.

For more information please contact:

Franca Davenport or Sam Wong
Research Media Officer
Imperial College London
Email: f.davenport@imperial.ac.uk
Tel: +44(0) 20 7594 2198 +44(0) 20 7594 3415
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors:

1. Reference: Tagliazucchi, E. et al. 'Enhanced repertoire of brain dynamical states during the psychedelic experience' Human Brain Mapping, 2014. http://onlinelibrary.wiley.com/doi/10.1002/hbm.22562/abstract.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: http://www.imperial.ac.uk

Franca Davenport | Eurek Alert!

Further reports about: Brain LSD Medicine consciousness drugs mushroom networks

More articles from Studies and Analyses:

nachricht When a fish becomes fluid
17.12.2018 | Institute of Science and Technology Austria

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>