Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research pinpoints crucial protein that keeps the heart beating on time

23.02.2015

Study suggests potential treatment for deadly heart problem

The average heart beats 35 million times a year - 2.5 billion times over a lifetime. Those beats must be precisely calibrated; even a small divergence from the metronomic rhythm can cause sudden death. For decades, scientists have wondered exactly how the heart stays so precisely on rhythm even though it contains so many moving parts.

Now, researchers at the University of Maryland School of Medicine (UM SOM) have helped identify how a particular protein plays a central role in this astonishing consistency. This is the first time the mechanism has been described; the discovery could eventually help scientists treat heart problems that kill millions of people every year.

W. Jonathan Lederer, MD, PhD, professor of physiology at the UM SOM, as well as director of the Center for Biomedical Engineering and Technology, and David Warshaw, PhD, professor of molecular physiology and biophysics at University of Vermont (UVM) and the Cardiovascular Research Institute of Vermont, describe how myosin-binding protein C ("C protein") allows the muscle fibers in the heart to work in perfect synchrony. The results appear today in the latest issue of the journal Science Advances.

"This protein turns out to be really important to this process," said Dr. Lederer. "This is a really exciting finding. We envision a lot of research that we can do with this new knowledge. We will continue to investigate this in all kinds of ways."

For years, researchers have known that calcium acts as a trigger for the heartbeat, activating proteins that cause the sarcomeres - the fibrous proteins that make up heart muscle cells - to contract. Dr. Lederer found that the calcium molecules are not distributed evenly across the length of each sarcomere; the molecules are released from the ends. Despite this, the sarcomeres contract uniformly. But exactly how has remained a thorny mystery.

Drs. Lederer, Warshaw and their colleagues found the answer: C protein. This protein was known to exist in all heart muscle cells, but until now, its function was unknown. Using an animal model, the researchers studied the physiology of sarcomeres, measuring calcium release and the muscle fibers' mechanical reaction. It turns out that C protein sensitizes certain parts of the sarcomere to calcium. As a result, the middle of the sarcomere contracts just as much as the ends, despite having much less calcium. In other words, C protein enables the sarcomeres to contract synchronously.

"Calcium is like the sparkplugs in an automobile engine and C protein acts like the rings that increase the efficiency of the movement of the pistons," says Michael J. Previs, PhD, an assistant professor in the Department of Molecular Physiology and Biophysics at UVM.

C protein appears to play a large part in many forms of heart disease. In the most severe cases, defects in C-protein lead to extremely serious arrhythmias, which cause sudden death when the heart loses the ability to pump blood. In the U.S., arrhythmias contribute to about 300,000 deaths a year, according to the American Heart Association. (Not all arrhythmias are fatal; some can be controlled with medicines and electrical stimulation.)

Lederer and his colleagues think that it may be possible to affect arrhythmias by modifying the activity of C protein through drugs. "I think this could be very big," says Dr. Lederer. "This protein is definitely a drug target."

Drs. Lederer and Warshaw also collaborated with scientists from the University of Pennsylvania, the University of Massachusetts Medical School, Cincinnati Children's Hospital Medical Center, and Eulji University in South Korea.

"This work by Dr. Lederer and his colleagues is a great example of collaborative basic science research with potentially huge translational implications," said Dean E. Albert Reece, MD, PhD, MBA, who is also the vice president for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the School of Medicine. "Beyond the elegant findings of this work, there remain many challenges in unravelling how C protein mutations produce contractile and arrhythmic dysfunction in disease."

The research was funded by the National Institutes of Health.

About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Maryland's Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center and Medical System to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes and a faculty of more than 3,000 physicians and research scientists plus more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global presence, with research and treatment facilities in more than 35 countries around the world. http://medschool.umaryland.edu/

BioMET is an organized research center that is a joint effort between the University of Maryland School of Medicine at the University of Maryland, Baltimore (UMB) and the Fischell Department of Bioengineering, Clark School of Engineering at the University of Maryland in College Park (UMCP). The center brings together basic biomedical researchers with engineers to develop new strategies and new devices to treat diseases.

David Kohn | EurekAlert!

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>