Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research pinpoints crucial protein that keeps the heart beating on time

23.02.2015

Study suggests potential treatment for deadly heart problem

The average heart beats 35 million times a year - 2.5 billion times over a lifetime. Those beats must be precisely calibrated; even a small divergence from the metronomic rhythm can cause sudden death. For decades, scientists have wondered exactly how the heart stays so precisely on rhythm even though it contains so many moving parts.

Now, researchers at the University of Maryland School of Medicine (UM SOM) have helped identify how a particular protein plays a central role in this astonishing consistency. This is the first time the mechanism has been described; the discovery could eventually help scientists treat heart problems that kill millions of people every year.

W. Jonathan Lederer, MD, PhD, professor of physiology at the UM SOM, as well as director of the Center for Biomedical Engineering and Technology, and David Warshaw, PhD, professor of molecular physiology and biophysics at University of Vermont (UVM) and the Cardiovascular Research Institute of Vermont, describe how myosin-binding protein C ("C protein") allows the muscle fibers in the heart to work in perfect synchrony. The results appear today in the latest issue of the journal Science Advances.

"This protein turns out to be really important to this process," said Dr. Lederer. "This is a really exciting finding. We envision a lot of research that we can do with this new knowledge. We will continue to investigate this in all kinds of ways."

For years, researchers have known that calcium acts as a trigger for the heartbeat, activating proteins that cause the sarcomeres - the fibrous proteins that make up heart muscle cells - to contract. Dr. Lederer found that the calcium molecules are not distributed evenly across the length of each sarcomere; the molecules are released from the ends. Despite this, the sarcomeres contract uniformly. But exactly how has remained a thorny mystery.

Drs. Lederer, Warshaw and their colleagues found the answer: C protein. This protein was known to exist in all heart muscle cells, but until now, its function was unknown. Using an animal model, the researchers studied the physiology of sarcomeres, measuring calcium release and the muscle fibers' mechanical reaction. It turns out that C protein sensitizes certain parts of the sarcomere to calcium. As a result, the middle of the sarcomere contracts just as much as the ends, despite having much less calcium. In other words, C protein enables the sarcomeres to contract synchronously.

"Calcium is like the sparkplugs in an automobile engine and C protein acts like the rings that increase the efficiency of the movement of the pistons," says Michael J. Previs, PhD, an assistant professor in the Department of Molecular Physiology and Biophysics at UVM.

C protein appears to play a large part in many forms of heart disease. In the most severe cases, defects in C-protein lead to extremely serious arrhythmias, which cause sudden death when the heart loses the ability to pump blood. In the U.S., arrhythmias contribute to about 300,000 deaths a year, according to the American Heart Association. (Not all arrhythmias are fatal; some can be controlled with medicines and electrical stimulation.)

Lederer and his colleagues think that it may be possible to affect arrhythmias by modifying the activity of C protein through drugs. "I think this could be very big," says Dr. Lederer. "This protein is definitely a drug target."

Drs. Lederer and Warshaw also collaborated with scientists from the University of Pennsylvania, the University of Massachusetts Medical School, Cincinnati Children's Hospital Medical Center, and Eulji University in South Korea.

"This work by Dr. Lederer and his colleagues is a great example of collaborative basic science research with potentially huge translational implications," said Dean E. Albert Reece, MD, PhD, MBA, who is also the vice president for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the School of Medicine. "Beyond the elegant findings of this work, there remain many challenges in unravelling how C protein mutations produce contractile and arrhythmic dysfunction in disease."

The research was funded by the National Institutes of Health.

About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Maryland's Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center and Medical System to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes and a faculty of more than 3,000 physicians and research scientists plus more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global presence, with research and treatment facilities in more than 35 countries around the world. http://medschool.umaryland.edu/

BioMET is an organized research center that is a joint effort between the University of Maryland School of Medicine at the University of Maryland, Baltimore (UMB) and the Fischell Department of Bioengineering, Clark School of Engineering at the University of Maryland in College Park (UMCP). The center brings together basic biomedical researchers with engineers to develop new strategies and new devices to treat diseases.

David Kohn | EurekAlert!

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>