Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nature study illuminates 55 million years of the carbon cycle and climate history

30.08.2012
A study in the August 30 issue of Nature provides, in unprecedented detail, the history of a crucial indicator of the relationship between the carbon cycle and climate processes over the past 55 million years.

Over this time period, when the Earth is known to have transitioned from "hothouse" to "icehouse" conditions, the oceans also experienced a dramatic shift in the carbonate compensation depth, or CCD. Defined as the depth below which carbonate minerals (such as calcite) dissolve completely, the CCD is known to fluctuate over time – it shallows during warm periods, and deepens when ice age conditions prevail. Now, however, scientists have a detailed and quantifiable record of just how much the CCD has shifted during recent geological history.

The study, which relies on seafloor sediment cores collected during a pair of 2009 expeditions on board the JOIDES Resolution, demonstrates that 55 million years ago, the CCD of the Pacific Ocean sat at an average of about two miles (3.3-3.6 km) below the sea surface. As the Earth cooled, however, the CCD sank – reaching its deepest point of almost three miles (4.8 km) between 13 and 11 million years ago. Today, the Pacific's CCD sits just less than three miles (4.5 km) deep, and is thought to be on the rise as a result of modern, human-induced climate change.

"Long-term change in CCD and changes in Earth's atmospheric carbon dioxide concentration both result from shifts in how carbon is cycled by earth processes," says study co-author Mitchell Lyle, a geoscientist at Texas A&M University who co-led the second of the two expeditions. "Adding geologic reserves of carbon into the oceans and atmosphere – by burning coal or petroleum, for example – causes oceans to become more acidic and causes the atmosphere and oceans to warm. This new CCD record is an important step toward understanding how the carbon system balances out over long time frames."

The Pacific Ocean has remained the largest ocean on Earth for millions of years. Today, it covers one third of the planet's surface, and its biologically productive equatorial region plays a very important role in the global carbon cycle and long-term climate patterns. Over four months, the drilling vessel JOIDES Resolution – operated by the U.S. Implementing Organization on behalf of the National Science Foundation (NSF) and the Integrated Ocean Drilling Program (IODP) – drilled nearly four miles of core samples at eight different locations across the center of the Pacific basin.

"We often discuss global warming induced by man-made carbon dioxide. However, on geological timescales of millions of years, other processes determine the carbon cycle," says lead author Heiko Pälike, a geoscientist at the University of Bremen who co-led the first expedition. Volcanoes are a major natural source of atmospheric carbon dioxide, while the weathering of carbonate rocks can remove the gas from the atmosphere. "The overall balance of these processes is reflected in the CCD," explains Pälike.

In the Nature study, Pälike, Lyle and their co-authors demonstrate that, in the equatorial Pacific, the CCD did not follow a one-way path to the depths as the planet cooled down. Rather, the data reveals five intervals in the "greenhouse" world (prior to 33 million years ago) during which the CCD fluctuated upwards and downwards in a range between 650 and 3,000 feet (200-900 meters), and at least four more major excursions in the last 20 million years. "These events, which often mirror warming and cooling phases, persisted between 250,000 and one million years," Pälike explains. They resulted from minor differences between how much calcium was added to the oceans by weathering versus how much carbon dioxide was added to the ocean-atmosphere system by volcanic eruptions. The cycling of carbon between the sea surface and deep ocean further complicated the situation.

"Understanding the processes that caused these CCD excursions will provide important new insights about how the carbon cycle and climate are linked," Lyle says. "And, they will help us better understand how and when the current spike in atmospheric carbon dioxide will eventually level out."

To access more data and information from the Pacific Equatorial Age Transect (PEAT) expeditions, please see: http://publications.iodp.org/proceedings/320_321/32021toc.htm

The paper, titled "A Cenozoic record of the equatorial Pacific carbonate compensation depth," appears in the August 30, 2012 issue of the journal Nature. (doi:10.1038/nature11360)

About IODP

The Integrated Ocean Drilling Program (IODP) is an international research program dedicated to advancing scientific understanding of the Earth through drilling, coring and monitoring the subseafloor. The JOIDES Resolution is a scientific research vessel managed by the U.S. Implementing Organization of IODP (USIO). Together, Texas A&M University, Lamont-Doherty Earth Observatory of Columbia University, and the Consortium for Ocean Leadership comprise the USIO. IODP is supported by two lead agencies: the U.S. National Science Foundation (NSF) and Japan's Ministry of Education, Culture, Sports, Science, and Technology. Additional program support comes from the European Consortium for Ocean Research Drilling (ECORD), the Australia-New Zealand IODP Consortium (ANZIC), India's Ministry of Earth Sciences, the People's Republic of China (Ministry of Science and Technology), and the Korea Institute of Geoscience and Mineral Resources. For more information, visit www.iodp.org.

Connect with us online!

Web: www.joidesresolution.org

Facebook: http://www.facebook.com/theJR

Twitter: @theJR and @SeafloorSci

Media Contacts:

Mitchell Lyle
Texas A&M University
College Station, Texas, USA
mlyle@ocean.tamu.edu
+1-979-845-3380
Matthew Wright Consortium for Ocean Leadership
Washington, D.C. USA
mwright@oceanleadership.org
+1-202-448-1254
Heiko Pälike
MARUM, University of Bremen
Bremen, Germany
hpaelike@marum.de
+49-421-218-65980
Albert Gerdes
MARUM, University of Bremen
Bremen, Germany
agerdes@marum.de
+49-421-218-65540
More news about Texas A&M University, go to http://tamutimes.tamu.edu/
Follow us on Twitter at http://twitter.com/tamu/

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>