Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-sponsored study describes how space flight impacts astronauts' eyes and vision

15.11.2011
North American Neuro-Ophthalmology Society (NANOS) member describes novel eye findings in astronauts after long duration space flight

A newly published ophthalmologic study recently described the history, clinical findings, and possible etiologies of novel ophthalmic findings discovered in astronauts after long-duration space flights.

The study team included ophthalmologists Thomas H. Mader, MD, of Alaska Native Medical Center and neuro-ophthalmologist and NANOS member, Andrew G. Lee, MD, Professor and Chair of the Department of Ophthalmology of The Methodist Hospital, Houston, Texas. The report is published in October's Ophthalmology, the journal of the American Academy of Ophthalmology.

The authors reported eye exam findings in seven astronauts as well as an analysis of post-flight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts. The seven astronauts with ocular anomalies had returned from long-duration space missions to the International Space Station (ISS) and all seven subjects had undergone complete eye examinations, including dilated exams and photographs of the back of the eye. Several had MRI scans, spinal taps, and computerized analysis of their optic nerve. After 6 months of space flight, all 7 astronauts had eye findings, including swollen optic nerves, distortion of the shape of the eyeball, and retinal changes. Most became more farsighted, and had blurred vision, especially at near. The spinal taps showed either top normal or slightly elevated pressures in the spinal fluid surrounding the brain and optic nerves.

The 300 post-flight questionnaires documented that approximately 29% and 60% of astronauts on short and long-duration missions, respectively, experienced a worsening of distance or near visual acuity. Some of these vision changes remain unresolved years after flight. The authors theorized that changes may have resulted from fluid shifts brought about by prolonged exposure to low gravity. The findings might represent parts of a spectrum of ocular and brain responses to extended exposure to low gravity. Future research is ongoing for astronauts entering new missions.

References

1. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight. Ophthalmology 118(10):2058-2069 October 2011.

Note to media: Contact NANOS at info@nanosweb.org to request full text of the study and arrange interviews with experts.

About the North American Neuro-Ophthalmology Society

The North American Neuro-Ophthalmology Society (NANOS) is the only organization dedicated to the advancement of neuro-ophthalmologic education and information in North America and has over 500 members. NANOS is dedicated to the achievement of excellence in patient care through the support and promotion of education, communication, research, and the practice of neuro-ophthalmology. For more information, please visit www.nanosweb.org.

Janel Fick | EurekAlert!
Further information:
http://www.nanosweb.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>