Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-Funded Study Refutes Alarmist Claims Of Drought Driven Declines In Plant Productivity And Risks To Global Food Security

29.08.2011
A new, comprehensive study by an international team of scientists, including scientists at Boston University in the US and the Universities of Viçosa and Campinas in Brazil, has been published in the current issue of Science (August 26, 2011) refuting earlier alarmist claims that drought has induced a decline in global plant productivity during the past decade and posed a threat to global food security.

Those earlier findings published by Zhao and Running in the August 2010 issue of Science (Vol. 329, p. 940) also warned of potentially serious consequences for biofuel production and the global carbon cycle. The two new technical comments in Science contest these claims on the basis of new evidence from NASA satellite data, which indicates that Zhao and Running’s findings resulted from several modeling errors, use of corrupted satellite data and statistically insignificant trends.

The main premise of Zhao and Running’s model-based study was an expectation of increased global plant productivity during the 2000s based on previously observed increases during the 1980s and 1990s under supposedly similar, favorable climatic conditions. Instead, Zhao and Running were surprised to see a decline, which they attributed it to large-scale droughts in the Southern Hemisphere.

“Their model has been tuned to predict lower productivity even for very small increases in temperature. Not surprisingly, their results were preordained,” said Arindam Samanta, the study’s lead author. (Samanta, now at Atmospheric and Environmental Research Inc., Lexington, MA, worked on the study as a graduate student at Boston University’s Department of Geography and Environment.)

Zhao and Running’s predictions of trends and year-to-year variability were largely based on simulated changes in the productivity of tropical forests, especially the Amazonian rainforests. However, according to the new study, their model failed miserably when tested against comparable ground measurements collected in these forests.

“The large (28%) disagreement between the model’s predictions and ground truth imbues very little confidence in Zhao and Running’s results,” said Marcos Costa, coauthor, Professor of Agricultural Engineering at the Federal University of Viçosa and Coordinator of Global Change Research at the Ministry of Science and Technology, Brazil.

This new study also found that the model actually predicted increased productivity during droughts, compared to field measurements, and decreased productivity in non-drought years 2006 and 2007 in the Amazon, in contradiction to the main finding of the previous report. “Such erratic behavior is typical of their poorly formulated model, which lacks explicit soil moisture dynamics,” said Edson Nunes, coauthor and researcher at the Federal University of Viçosa, Brazil.

The new study indicates that Zhao and Running used NASA’s MODIS satellite data products, such as vegetation leaf area, without paying caution to data corruption by clouds and aerosols. “Analyzing the same satellite data products after carefully filtering out cloud and aerosol-corrupted data, we could not reproduce the patterns published by Zhao and Running. Moreover, none of their reported productivity trends are statistically significant,” said Liang Xu, coauthor and graduate student at Boston University.

In any case, the trends in plant productivity reported by Zhao and Running are miniscule—a 0.34% reduction in the Southern Hemisphere offset by a 0.24% gain in the Northern Hemisphere for a net decline of 0.1% over a ten-year period from 2000 to 2009. “This is the proverbial needle in a haystack,” said Simone Vieira, coauthor and researcher at the State University of Campinas, Brazil. “There is no model accurate enough to predict such minute changes over such short time intervals, even at hemispheric scales.”

Any investigation of trends in plant growth requires not only consistent and accurate climate and satellite data but also a model suitable for such purposes. “The Zhao and Running study does not even come close,” said Ranga Myneni, senior author and Professor of Geography, Boston University. “Their analysis of satellite data is flawed because they included poor quality data and do not bother to test trends for statistically significance. Our analyses of four different higher-quality MODIS satellite vegetation products that have been carefully filtered for data corruption show no statistically significant trends over 85% of the global vegetated lands.”

This study was funded through a research grant by the NASA MODIS project to Prof. Myneni for investigation on the use of MODIS satellite data to study vegetation on our planet.

Experts to comment on this story:
Prof. Ian Colin Prentice, Macquarie University, colin.prentice@mq.edu.au, +61-425-040669
Dr. Compton J. Tucker, NASA, compton.j.tucker@nasa.gov, +1-301-614-6644
Prof. Inez Fung, UC-Berkeley, ifung@berkeley.edu, +1-510-643-9367
About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.
Ranga Myneni: ranga.myneni@gmail.com, +1-617-470-7065
Arindam Samanta: arindam.sam@gmail.com, +1-617-852-5256
Marcos Costa: mhcosta@ufv.br, +55-31-8727-1899

Ranga Myneni | Newswise Science News
Further information:
http://www.bu.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>