Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Narrowest bridges of gold are also the strongest, study finds

14.07.2011
Technology used to probe tiny samples is licensed to Western New York firm

At an atomic scale, the tiniest bridge of gold -- that made of a single atom -- is actually the strongest, according to new research by engineers at the University at Buffalo's Laboratory for Quantum Devices.


A bridge made of a single atom of gold has twice the strength of bulk gold, according to new UB research. Credit: University at Buffalo

The counterintuitive finding is the result of experiments probing the characteristics of atomic-scale necks of gold that formed when the pointed, gold tip of a cantilever was pushed into a flat, gold surface. An examination of these tiny, gold bridges revealed that they were stiffest when they comprised just a single atom.

The study was published in June in Physical Review B by a trio of UB researchers: postdoctoral fellow Jason Armstrong and professors Susan Hua and Harsh Deep Chopra, all in UB's Department of Mechanical and Aerospace Engineering. Support for the work came from National Science Foundation grants No. DMR-0706074 and No. DMR-0964830.

As engineers look to build devices such as computer circuits with ever-smaller parts, it is critical to learn more about how tiny components comprising a single atom or a few atoms might behave. The physical properties of atomic-scale gadgets differ from those of larger, "bulk" counterparts.

"Everyday intuition would suggest that devices made of just a few atoms would be highly susceptible to mechanical forces," the team said. "This study finds, however, that the ability of the material to resist elastic deformation actually increases with decreasing size."

Another observation the team made while studying the tiny gold necks: abrupt atomic displacements that occur as the gold tip and surface are drawn apart are not arbitrary, but follow well-defined rules of crystallography. More scientific highlights of the work are summarized in the Physical Review Focus of the American Physical Society at http://focus.aps.org/story/v27/st24.

UB's Laboratory for Quantum Devices, led by Chopra and Hua, works on mapping the evolution of various physical properties of materials -- including mechanical, magnetic and magneto-transport behavior -- as sample sizes grow from a single atom to bulk.

This complicated task requires technology capable of capturing a single or few atoms between probes, and further pushing and pulling on the atoms to study their response.

The sophisticated technology that Armstrong, Hua and Chopra invented and built to accomplish the research was recently licensed to Precision Scientific Instruments Inc., a Western New York start-up company founded by the leaders of Murak & Associates LLC, a management consulting practice; SoPark Corporation, an electronics service manufacturer (ESM); and The PCA Group, Inc., a consulting firm that offers total technology solutions.

"The instruments and methods are incredibly precise and capable of deforming the sample at the picometer scale (about 100 times smaller than an atom), which means literally stretching the bond lengths, and simultaneously measuring the forces at the piconewton level, as well as various other properties. As a very broad perspective, by enabling researchers to probe the very small, the technology could speed advances in fields ranging from satellite communications to health care," said Gerry Murak, president and cofounder of Precision Scientific Instruments, Inc.

"Small is exciting, and atomic scale devices are the new frontier of technology. Metrology systems capable of probing the behavior of atomic-scale devices are sorely needed, and this technology gives us a unique platform," Murak said.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>