Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple births lead to weight gain and other problems for mouse moms and male offspring

27.01.2012
Women have long bemoaned the fact that as they have more children, their weight gain from pregnancy becomes more difficult to lose.

A new study using a mouse model that mimics the human effects of multiparity (giving birth more than once) has found that mouse moms who gave birth four times accrued significantly more fat compared to primiparous females (those giving birth once) of similar age.

The study also found significantly more inflammation in the livers of multiparous animals. Multiparity's effect also extended to the male offspring, who showed significant weight gain during adulthood. Their primiparous counterparts did not, despite similar levels of food consumption. The findings are contained in a study entitled "Multiparity Leads to Obesity and Inflammation in Mothers and Obesity in Male Offspring," and appear in the American Journal of Physiology – Endocrinology and Metabolism, published by the American Physiological Society.

Methodology

Researchers at the University of Cincinnati designed the study in two parts. In the first part, they established the mouse model that mimics multiparity-induced obesity in humans. In the second part, they examined male offspring of the multiparous females.

The researchers compared one group of mice that gave birth four times with a second group of mice that gave birth only once, some of these at the same age that the first group had its fourth litter and some at a younger age.

The researchers weighed these animals and assessed the size of their fat deposits. They also performed glucose tolerance tests in all the mice and measured biochemical markers of inflammation. Additionally, the researchers performed similar tests in the male offspring of primiparous and multiparous mice, and measured weight, fat deposits, and glucose tolerance. They also measured the expression levels of various genes involved in storing versus using fat.

Results

The first part of the study showed that giving birth multiple times was a significant contributor to obesity regardless of age, with mice who gave birth multiple times being up to 45 percent heavier than those who had a single litter at the same age that the first animals had their fourth. The multiparous animals had fat deposits several times larger than those in typically-mated primiparous mice, as well as significantly larger glucose spikes after meals, a warning sign for diabetes. Multiparous moms also showed elevated markers for inflammation in numerous body tissues, a condition linked to heart disease, diabetes, cancer, and a variety of other diseases, as compared to the primiparous mice as well as age-matched females fed a high fat diet.

The second part of the study revealed that male offspring of multiparous mice weighed as much as 40 percent more than the male offspring of primiparous mice, despite eating no more food. Interestingly, the differences became apparent when the offspring were older, suggesting that excess energy was stored as fat only after growth rate slowed down. When the researchers examined genes responsible for storing versus using fat, the offspring of multiparous animals appeared to use less fat compared to those of the primiparous animals.

Importance, Implications of the Findings

These findings confirm that in mice, as in humans, giving birth multiple times, regardless of age, can lead to significant weight gain, and inflammation. The results also support the theory that multiple pregnancies induce metabolic stresses on females that have heritable consequences and may be part of an obesity cycle between mothers and offspring.

The authors suggest that finding effective ways to help women lose weight between pregnancies will assist in maintaining their health and that of their children, though additional interventions will likely be required as multiple pregnancies appear to have an adverse effect on women that is independent of her fat mass. "The current studies are important in supporting a healthier, less obese population in that we have defined specific metabolic pathways that are likely involved in the programming of obesity and can be targeted in either the mother or her offspring," the authors say.

Study Team

The study was conducted by Sandra R. Rebholz, Thomas Jones, Katie T. Burke, Anja Jaeschke, Patrick Tso, David A. D'Alessio, and Laura A. Woollett, all of the University of Cincinnati College of Medicine.

NOTE TO EDITORS: The article is available online at http://bit.ly/zcIkKf. To request an interview with a member of the research team please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301-634-7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; http://www.the-APS.org/press) has been promoting advances in physiology and medicine for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>