Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-Center Clinical Study Intensifies First Strike at High-Risk Cancer in Kids

13.06.2012
An experimental treatment that combines intense chemotherapy with a radioactive isotope linked to synthesized neurotransmitter is being tested in newly diagnosed cases of high-risk neuroblastoma – a deadly, hard-to-cure childhood cancer.

The experimental radiopharmaceutical, 131I-MIBG, has already been tested in children with relapsed and resistant neuroblastoma, with encouraging results in reducing tumor size. This has prompted doctors in a new multi-center pilot clinical trial to see if their innovative combination therapy can help improve cure rates for newly diagnosed children and young adults, according to Brian Weiss, MD, trial chair and an oncologist at the Cincinnati Children’s Hospital Medical Center.

Cure rates for neuroblastoma have plateaued at about 40 percent and new solutions are needed to improve outcomes, said Weiss, a member of the medical center’s Cancer and Blood Diseases Institute.

“Unlike some diseases, there is no single detectable biological sign of neuroblastoma, so it’s hard to catch early,” he explained. “Children with relapsed disease usually don’t survive more than a few years. We want to see if giving this more intensive treatment right after diagnosis will safely decrease the chances of the cancer coming back.”

Neuroblastoma is one of the most commonly diagnosed childhood cancers, developing in nerve cells outside the brain. The cancer is usually first diagnosed by showing up as a lump or mass in the belly, or near the spinal cord in the chest or neck. The disease can spread to bone, the liver, lymph nodes and bone marrow. In high-risk neuroblastoma, the tumor has often spread from its primary site and is harder to treat.

MIBG stands for Meta-Iodo-Benzyl-Guanidine, a synthesized form of the adrenal gland hormone and neurotransmitter adrenalin. MIBG concentrates selectively in the body’s sympathetic nervous system, which helps control glands and muscles. When attached to the radioactive isotope iodine-131, it’s known as 131I-MIBG. After being injected, 131I-MIBG targets and is taken up by nerve tumors like neuroblastoma. This exposes the cancer cells to very high doses of radiation from the iodine-131, with minimal toxicity to neighboring normal cells.

Standard treatment for neuroblastoma normally includes several rounds of chemotherapy combined with surgery and external radiation. In the current trial, a round of chemotherapy will be replaced by injection of 131I-MIBG combined with the chemotherapy drugs vincristine and irinotecan. The chemotherapy drugs will kill some of the cancer cells and, according to research, may help 131I-MIBG do a better job of eradicating tumor cells, said Weiss.

Patients receiving the treatment will also receive a transfusion of previously collected blood stem cells to boost their blood counts after being injected with the radioactive isotope.

The trial is coordinated through and sponsored by the Children’s Oncology Group (COG), an international research consortium of the National Cancer Institute (National Institutes of Health). Thirteen hospitals in the United States and Canada are currently participating in the trial, which is expected to last two years and include up to 44 newly diagnosed patients who have not received previous treatment for their neuroblastoma.

Data from the trial, considered a small pilot study, will be used to help inform larger subsequent clinical trials testing 131I-MIBG-vincristine-irinotecan therapy for neuroblastoma, according to Weiss. The pilot trial’s initial goal is determining the feasibility of newly diagnosed patients traveling from a participating home/regional medical center to participating specialized centers that will administer the 131I-MIBG part of therapy, and then back to their home center for the remainder of treatment.

Four of the 13 currently participating hospitals will administer the 131I-MIBG portion of the therapy, which requires special capabilities: Cincinnati Children’s, Children’s Hospital of Philadelphia, University of California-San Francisco School of Medicine, and C.S. Mott Children’s Hospital in Ann Arbor, Mich.

Other participating hospitals include: Phoenix Children’s Hospital, Medical University of Southern Carolina, University of Texas Southwestern Medical Center, Children’s Hospital Los Angeles, The Children’s Hospital Denver, Children’s National Medical Center, Primary Children’s Medical Center, Salt Lake City, University of Chicago, and University of Alabama, Birmingham. Two additional medical centers are expected to be added to the trial, Weiss said.

For more information, contact the Cincinnati Children’s Cancer and Blood Diseases Institute at 513-636-2799 or cancer@cchmc.org,or visit: http://clinicaltrials.gov/ct2/show/NCT01175356?term=MIBG&rank=13.

For more information about neuroblastoma therapies and research at the Cincinnati Children’s Cancer and Blood Diseases Institute, please visit: http://www.cincinnatichildrens.org/service/n/neuroblastoma/default/.

Contact Information
Nick Miller, 513-803-6035, nicholas.miller@cchmc.org

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>