Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MUHC researchers identify biomarkers that could lead to early diagnosis of colorectal cancer

30.10.2013
Diagnosing colorectal cancer (CRC) is complex; it relies on significant invasive tests and subjective evaluations.

This process may soon become much easier thanks to a medical breakthrough by scientists at the Research Institute of the McGill University Health Centre (RI-MUHC). The researchers have identified genetic changes in the colon lining, or mucosa, in colorectal cancer patients that could be used as biomarkers of the disease.

That will allow doctors to diagnose patients earlier, more accurately and less invasively. The study, recently published online, in Cancer Prevention Research, has implications for the nearly one million people diagnosed annually worldwide.

“The gold standard of diagnosis is currently colonoscopy,” says corresponding author of the study, Dr. Rima Rozen, a geneticist from the Departments of Human Genetics and Pediatrics at The Montreal Children’s Hospital of the MUHC and McGill University. “This is an invasive procedure, where the physician looks for abnormal tissue or growths also known as polyps.” Additionally, given surging demand for colonoscopies, this research may ultimately offer an alternative option for early diagnosis, paving the way for the reduction in wait time.

According to Dr. Rozen, who is also a researcher of the Medical Genetics and Genomics Axis at the RI-MUHC, having genetic biomarkers of CRC will enhance the diagnostic procedure. “This new method could help to avoid false negative findings, which can occur in 10 to 15 per cent of endoscopic procedures,” she says. “The key is using the right genes. I believe the ones we have identified are good candidates.”

Dr. Rozen and her colleagues first identified five possible abnormal marker genes in a colon cancer mouse model. They then confirmed that these candidate biomarker genes were also abnormal in tissue obtained from colon cancer patients. “Not only did this show that our mouse model mimics the human disease,” says Dr. Rozen. “But more importantly, it identified genes that could be used for colorectal cancer diagnosis.”

Interestingly, the abnormal patterns of these genes were detected in otherwise normal colon cells that were not near the tumor site. “CRC develops in different stages,” says Dr. Rozen. “This finding suggests that it may be possible to take tissue samples in more accessible regions of the gastrointestinal tract or, ideally, in blood or stool, and look for biomarkers as an early indicator of disease.”

About colorectal cancer
Colorectal cancer – also known as bowel or colon cancer – refers to the abnormal cell growth in the colon (intestine) and rectum. The abnormal cells can develop into benign (non-cancerous) tumours called polyps. Although not all polyps develop into colorectal cancer, colorectal cancer almost always develops from a polyp. Over time, genes in the polyp mutate and cells within them become malignant (cancerous). Colorectal cancer is the most common cancer in developed countries.
About the study:
The study, Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients, was co-authored by Daniel Leclerc, Nancy Lévesque, Yuanhang Cao, Liyuan Deng, Qing Wu, and Rima Rozen of the RI-MUHC, Montreal and Jasmine Powell and Carmen Sapienza of the Temple University School of Medicine, Philadelphia.

This research was made possible thanks to funding from the Canadian Institutes of Health Research (CIHR).

Related links:
Cited study: cancerpreventionresearch.aacrjournals.org/
McGill University Health Centre (MUHC): muhc.ca
Research Institute of the MUHC: muhc.ca/research
McGill University: mcgill.ca
Temple University School of Medicine: temple.edu/medicine
For more information please contact:
Julie Robert
Public Affairs and Strategic Planning
McGill University Health Centre
t: 514-843-1560
e: julie.robert@muhc.mcgill.ca
facebook.com/cusm.muhc

Julie Robert | McGill University Health Centre
Further information:
http://www.muhc.ca

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>