Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI study finds that depression uncouples brain's hate circuit

04.10.2011
A new study using MRI scans, led by Professor Jianfeng Feng, from the University of Warwick's Department of Computer Science, has found that depression frequently seems to uncouple the brain's "Hate Circuit". The study entitled "Depression Uncouples Brain Hate Circuit" is published today (Tuesday 4th October 2011) in the journal Molecular Psychiatry.

The researchers used MRI scanners to scan the brain activity in 39 depressed people (23 female 16 male) and 37 control subjects who were not depressed (14 female 23 male). The researchers found the fMRI scans revealed significant differences in the brain circuitry of the two groups.

The greatest difference observed in the depressed patients was the uncoupling of the so-called "hate circuit" involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing.

The hate circuit was first clearly identified in 2008 by UCL Professor Semir Zeki who found that a circuit which seemed to connect three regions in the brain (the superior frontal gyrus, insula and putamen) when test subjects were shown pictures of people they hated.

The new University of Warwick led research found that in significant numbers of the depressed test subjects they examined by fMRI that this hate circuit had become decoupled. Those depressed people also seemed to have experienced other significant disruptions to brain circuits associated with; risk and action, reward and emotion, and attention and memory processing. The researchers found that in the depressed subjects:

The Hate circuits were 92% per cent likely to be decoupled
The Risk/Action circuit was 92% likely to be decoupled
The Emotion/Reward circuit was 82% likely to be decoupled
Professor Jianfeng Feng, from the University of Warwick's Department of Computer studies said that:

"The results are clear but at first sight are puzzling as we know that depression is often characterized by intense self loathing and there is no obvious indication that depressives are less prone to hate others. One possibility is that the uncoupling of this hate circuit could be associated with impaired ability to control and learn from social or other situations which provoke feelings of hate towards self or others. This in turn could lead to an inability to deal appropriately with feelings of hate and an increased likelihood of both uncontrolled self-loathing and withdrawal from social interactions. It may be that this is a neurological indication that is more normal to have occasion to hate others rather than hate ourselves."

A draft of the paper can be seen at: http://www.dcs.warwick.ac.uk/~feng/papers/mp_11_jf.pdf

Note for editors:

The full list of the paper's authors is as follows: Professor Jianfeng Feng, Department of Computer Science, University of Warwick and also the Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University,; Zhimin Xue, Zhening Liu, and Haojuan Tao, all from the Institute of Mental Health, Second Xiangya Hospital, Central South University, China; Shuixia Guo, Mathematics and Computer Science College, Hunan Normal University, China; Tian Ge, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China; Keith M. Kendrick Cognitive and Systems Neuroscience Group, The Babraham Institute.

Professor Jianfeng Feng | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Control 2019: Fraunhofer IPT presents high-speed microscope with intuitive gesture control

24.04.2019 | Trade Fair News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>