Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do you know what your mother did when she was young?

04.02.2009
A study reveals that the severity of learning disorders may depend not only on the child's environment but also – remarkably – on the mother's environment when she was young.

The study in memory-deficient mice, published in the February 4 issue of The Journal of Neuroscience, was led by Larry Feig, PhD, professor of biochemistry at Tufts University School of Medicine and member of the biochemistry and neuroscience programs at the Sackler School of Graduate Biomedical Sciences at Tufts University.

The researchers studied the brain function of pre-adolescent mice with a genetically-created defect in memory. When these young mice were enriched by exposure to a stimulating environment – including novel objects, opportunities for social interaction and voluntary exercise – for two weeks, the memory defect was reversed. The work showed that this enhancement was remarkably long-lasting because it was passed on to the offspring even though the offspring had the same genetic mutation and were never exposed to an enriched environment.

Previous research has shown that environmental exposures during pregnancy can affect offspring. "A striking feature of this study is that enrichment took place during pre-adolescence, months before the mice were even fertile, yet the effect reached into the next generation," said Feig.

"The offsprings' improved memory was not the result of better nurturing by mothers who were enriched when they were young. When the offspring were raised by non-enriched foster mothers, the offspring maintained the beneficial effect," said co-author Junko Arai, PhD, postdoctoral associate in Feig's laboratory.

"The effect lasted until adolescence, when it waned, suggesting that this process is designed specifically to aid the young brain," continued Shaomin Li, PhD, MD, co-author, former postdoctoral associate in Feig's laboratory, now at Brigham and Women's Hospital.

"This example of 'inheritance of acquired characters,' was first proposed by Lamarck in the early 1800s. However, it is incompatible with classical Mendelian genetics, which states that we inherit qualities from our parents through specific DNA sequences they inherited from their parents. We now refer to this type of inheritance as epigenetics, which involves environmentally-induced changes in the structure of DNA and the chromosomes in which DNA resides that are passed on to offspring," said Feig.

Previous research by Feig and his team showed that a relatively brief exposure to an enriched environment in both normal and memory-deficient mice unlocks an otherwise latent biochemical control mechanism that enhances a cellular process in nerve cells called long-term potentiation (LTP), which is known to be involved in learning and memory. This enhancement was detected in pre-adolescent mice but not in adult mice, reflecting the brain's higher plasticity in the young.

Feig concluded that the transgenerational inheritance of the effect of an enriched environment may be a mechanism that has evolved to protect one's offspring from deleterious effects of sensory deprivation, which may be particularly potent in the young and exacerbated in the learning disabled.

Junko Arai and Shaomin Li, first authors, contributed equally to the paper. Dean M. Hartley, PhD, of Rush University Medical Center is also an author.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>