Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitigating corrosive effects

17.01.2014
A study of the thermodynamic properties of copper connections uncovers a route to improving the reliability of electronic devices

One in five electronic-device failures is a result of corrosion. Bonds, the metal connections that enable the current to flow from one component to the next, are a particular weak point. Understanding what causes this breakdown is important for extending the lifetime of a device.


Understanding how corrosion affects the reliability of the bonds connecting components on an integrated circuit could help to increase the operational lifetime of microelectronic devices.

© Joao Freitas/Hemera/Thinkstock

Kewu Bai and co©workers at the A*STAR Institute of High Performance Computing, Singapore, have charted how moisture can affect the stability of the bonding and developed a scheme for improving the reliability of these connections.

Wire bonding is generally considered the most cost-effective and flexible method for interconnecting an integrated circuit or other semiconductor device and its packaging. ¡°This process uses force, ultrasonic vibrations and heat to make bonds,¡± explains Bai. ¡°The reliability of the bonds depends on the stability of the metallic compounds that form during the process of connecting a contact pad ¡ª made from aluminum, for example ¡ª and the wire, which is made of copper or gold.¡±

Gold is the material of choice for electrical connections in microelectronic components. With the price of gold having steadily risen over the last few years, however, electrical engineers are now turning to copper as a cheaper alternative because it exhibits many of the same desirable electrical properties. As copper¨Caluminum compounds are prone to corrosion in humid environments, encapsulation is employed in microelectronic packages to prevent moisture ingress, yet permeation and leakage are still possible. Damage to the external packaging can allow moisture to reach the sensitive circuitry and slowly corrode the copper connections.

¡°Using simulations, we can understand the conditions for copper wire bonding corrosion in aqueous environments and the corresponding corrosion mechanisms,¡± says Bai. ¡°There has been much debate about the possible mechanisms for a long time.¡±

Bai and his team calculated the thermodynamic properties of copper electrical bonds and used this information to construct so-called Pourbaix diagrams ¨C maps of the immunity, passivity and corrosion zones of alloys with different copper and aluminum compositions in the presence of corrosive agents, such as water and chloride at various temperatures.

¡°We showed that the stability of the layer of aluminum oxide formed during bonding plays a critical role,¡± says Bai. ¡°By introducing highly charged atomic impurities into the aluminum pads, the diffusion of aluminum atoms out of the aluminum oxide can be reduced and thus, the stability can be enhanced.¡± Therefore, this scheme offers one possible route to improving the reliability of copper bonds.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Zeng, Y., Bai, K. & Jin, H. Thermodynamic study on the corrosion mechanism of copper wire bonding. Microelectronics Reliability 53, 985¨C1001 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>