Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromovements hold hidden information about severity of autism, researchers report

03.12.2013
Movements so minute they cannot be detected by the human eye are being analyzed by researchers to diagnose autism spectrum disorder and determine its severity in children and young adults, according to research presented at the 2013 Society for Neuroscience annual meeting in November.

The research is the work of Jorge V. José, Ph.D., vice president of research at Indiana University, and Elizabeth Torres, Ph.D., the principal investigator for the study and an assistant professor in the Department of Psychology in the School of Arts and Sciences at Rutgers University. They are building on earlier findings involving the random nature of movements of people with autism. The work was presented in a poster by biophysics and neuroscience Ph.D. graduate student Di Wu, who works in Dr. José’s lab.

Earlier research looked at the speed maximum and randomness of movement during a computer exercise that involved tracking the motions of youths with autism when touching an image on the screen to indicate a decision. That research was reported in July in the Nature journal Frontiers of Neuroscience.

In the new study, the researchers looked at the entire movement involved in raising and extending a hand to touch a computer screen. The device they use can record 240 frames per second, which allows them to measure speed changes in the millisecond range.

“We looked at the curve going up and the curve going down and studied the micromovements,” said Dr. José, who also is the James H. Rudy Distinguished Professor of Physics in the IU Bloomington College of Arts and Sciences and a professor of cellular and integrative physiology at the IU School of Medicine.

“When a person reaches for an object, the speed trajectory is not one smooth curve; it has some irregular random movements we call ‘jitter,’" he said. "We looked at the properties of those very small fluctuations and identified patterns.” Those patterns or signatures also identify the degree of the severity of the person’s autism spectrum disorder, he said

“Often in movement research, such fluctuations are considered a nuisance," Dr. José said. "People averaged them away over repeated movements, but we decided instead to analyze the movements on a smaller time scale and found they hold lots of information to help diagnose the continuum of autism spectrum disorder.

“Looking at the speed versus time curves of the motion in much more detail, we noticed that in general many smaller oscillations or fluctuations occur even when the hand is resting in the lap. We decided to carefully study that jitter. Our remarkable finding is that the fluctuations in this jitter are not just random fluctuations, but they do correspond to unique characteristics of the degree of autism each child has.”

Wu said the more detailed information allows subtyping autism spectrum disorder, Asperger’s and identify typically developing individuals much better than what had been done before in terms of the global distribution of movements.

The next step is to compare the output of the new methodology in individuals with autism of idiopathic origins with those with autism of known etiology. The new refinement may help advance research in autism spectrum disorder to develop treatments tailored to the individual's needs and capabilities. A collaborative effort with the Torres lab at Rutgers is underway.

Mary Hardin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>