Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites Reveal Another Way to Make Life's Components

09.03.2012
Creating some of life's building blocks in space may be a bit like making a sandwich – you can make them cold or hot, according to new NASA research.

This evidence that there is more than one way to make crucial components of life increases the likelihood that life emerged elsewhere in the Universe, according to the research team, and gives support to the theory that a "kit" of ready-made parts created in space and delivered to Earth by impacts from meteorites and comets assisted the origin of life.


A meteorite analyzed in the study at its collection site in Antarctica. Credit: Antarctic Search for Meteorites program, Case Western Reserve University

In the study, scientists with the Astrobiology Analytical Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Md., analyzed samples from fourteen carbon-rich meteorites with minerals that indicated they had experienced high temperatures – in some cases, over 2,000 degrees Fahrenheit. They found amino acids, which are the building blocks of proteins, used by life to speed up chemical reactions and build structures like hair, skin, and nails.

Previously, the Goddard team and other researchers have found amino acids in carbon-rich meteorites with mineralogy that revealed the amino acids were created by a relatively low-temperature process involving water, aldehyde and ketone compounds, ammonia, and cyanide called "Strecker-cyanohydrin synthesis."

"Although we've found amino acids in carbon-rich meteorites before, we weren't expecting to find them in these specific groups, since the high temperatures they experienced tend to destroy amino acids," said Dr. Aaron Burton, a researcher in NASA's Postdoctoral Program stationed at NASA Goddard. "However, the kind of amino acids we discovered in these meteorites indicates that they were produced by a different, high-temperature process as their parent asteroids gradually cooled down." Burton is lead author of a paper on this discovery appearing March 9 in Meteoritics and Planetary Science.

In the new research, the team hypothesizes the amino acids were made by a high-temperature process involving gas containing hydrogen, carbon monoxide, and nitrogen called "Fischer-Tropsch" –type reactions. They occur at temperatures ranging from about 200 to 1,000 degrees Fahrenheit with minerals that facilitate the reaction. These reactions are used to make synthetic lubricating oil and other hydrocarbons; and during World War II, they were used to make gasoline from coal in an attempt to overcome a severe fuel shortage.

Researchers believe the parent asteroids of these meteorites were heated to high temperatures by collisions or the decay of radioactive elements. As the asteroid cooled, Fischer-Tropsch-type (FTT) reactions could have happened on mineral surfaces utilizing gas trapped inside small pores in the asteroid.

FTT reactions may even have created amino acids on dust grains in the solar nebula, the cloud of gas and dust that collapsed under its gravity to form the solar system. "Water, which is two hydrogen atoms bound to an oxygen atom, in liquid form is considered a critical ingredient for life. However, with FTT reactions, all that's needed is hydrogen, carbon monoxide, and nitrogen as gases, which are all very common in space. With FTT reactions, you can begin making some prebiotic components of life very early, before you have asteroids or planets with liquid water," said Burton.

In the laboratory, FTT reactions produce amino acids, and can show a preference for making straight-chain molecules. "In almost all of the 14 meteorites we analyzed, we found that most of the amino acids had these straight chains, suggesting FTT reactions could have made them," said Burton.

It's possible that both Strecker and FTT processes could have contributed to the supply of amino acids in other meteorites. However, evidence for the FTT reaction would tend to get lost because FTT reactions create them in much lower abundances than Strecker synthesis. If an asteroid with an initial amino acid supply from FTT reactions was later altered by water and Strecker synthesis, it would overwrite the small contribution from the FTT reactions, according to the team.

The team believes the majority of the amino acids they found in the 14 meteorites were truly created in space, and not the result of contamination from terrestrial life, for a few reasons. First, the amino acids in life (and in contamination from industrial products) are frequently linked together in long chains, either as proteins in biology or polymers in industrial products. Most of the amino the amino acids discovered in the new research were not bound up in proteins or polymers. In addition, the most abundant amino acids found in biology are those that are found in proteins, but such "proteinogenic" amino acids represent only a small percentage of the amino acids found in the meteorites. Finally, the team analyzed a sample of ice taken from underneath one of the meteorites. This ice had only trace levels of amino acids suggesting the meteorites are relatively pristine.

The experiments showing FTT reactions produce amino acids were performed over 40 years ago. The products have not been analyzed with modern techniques, so the exact distributions of amino acid products have not been determined. The team wants to test FTT reactions in the laboratory using a variety of ingredients and conditions to see if any produce the types of amino acids with the abundances they found in the 14 meteorites.

The team also wants to expand their search for amino acids to all known groups of carbon-rich meteorites. There are eight different groups of carbon-rich meteorites, called "carbonaceous chondrites." The new work adds two additional groups to the three previously known to have produced amino acids, leaving three groups to be tested. These three remaining groups have a high metal content as well as evidence for high temperatures. "We'll see if they have amino acids also, and hopefully gain some insight into how they were made," says Burton. When the team began looking for amino acids in carbon-rich meteorites, it was considered somewhat of a long shot, but now: "We would be surprised if we didn't discover amino acids in a carbon-rich meteorite," says Burton.

The research was funded by the NASA Astrobiology Institute (NAI), the Goddard Center for Astrobiology, and the NASA Cosmochemistry Program. NAI is managed by NASA Ames Research Center in Mountain View, Calif. Dr. Burton was supported by the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. Meteorite samples were provided by Dr. Kevin Righter of NASA's Johnson Space Center, Houston, Texas.

Bill Steigerwald
William.A.Steigerwald@nasa.gov
NASA's Goddard Space Flight Center, Greenbelt, Md.

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>