Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Messy children make better learners

02.12.2013
Study shows toddlers learn words for nonsolids better when getting messy in a highchair

Attention, parents: The messier your child gets while playing with food in the high chair, the more he or she is learning.


Don't let the mess in the high chair bother you. New research from the University of Iowa shows kids who get messy in the high chair are learning.

Credit: Tim Schoon, University of Iowa

Researchers at the University of Iowa studied how 16-month-old children learn words for nonsolid objects, from oatmeal to glue. Previous research has shown that toddlers learn more readily about solid objects because they can easily identify them due to their unchanging size and shape. But oozy, gooey, runny stuff? Not so much.

New research shows that changes if you put toddlers in a setting they know well, such as shoving stuff in their mouths. In those instances, word learning increases, because children at that age are "used to seeing nonsolid things in this context, when they're eating," says Larissa Samuelson, associate professor in psychology at the UI who has worked for years on how children learn to associate words with objects. "And, if you expose them to these things when they're in a highchair, they do better. They're familiar with the setting and that helps them remember and use what they already know about nonsolids."

... more about:
»16-month-old »MESSy »Messy children »Toddlers

In a paper published in the journal Developmental Science, Samuelson and her team at the UI tested their idea by exposing 16-month-olds to 14 nonsolid objects, mostly food and drinks such as applesauce, pudding, juice, and soup. They presented the items and gave them made-up words, such as "dax" or "kiv." A minute later, they asked the children to identify the same food in different sizes or shapes. The task required the youngsters to go beyond relying simply on shape and size and to explore what the substances were made of to make the correct identification and word choice.

Not surprisingly, many children gleefully dove into this task by poking, prodding, touching, feeling, eating—and yes, throwing—the nonsolids in order to understand what they were and make the correct association with the hypothetical names. The toddlers who interacted the most with the foods—parents, interpret as you want—were more likely to correctly identify them by their texture and name them, the study determined. For example, imagine you were a 16-month-old gazing at a cup of milk and a cup of glue. How would you tell the difference by simply looking?

"It's the material that makes many nonsolids," Samuelson notes, "and how children name them."

The setting matters, too, it seems. Children in a high chair were more apt to identify and name the food than those in other venues, such as seated at a table, the researchers found.

"It turns out that being in a high chair makes it more likely you'll get messy, because kids know they can get messy there," says Samuelson, the senior author on the paper.

The authors say the exercise shows how children's behavior, environment (or setting) and exploration help them acquire an early vocabulary—learning that is linked to better later cognitive development and functioning.

"It may look like your child is playing in the high chair, throwing things on the ground, and they may be doing that, but they are getting information out of (those actions)," Samuelson contends. "And, it turns out, they can use that information later. That's what the high chair did. Playing with these foods there actually helped these children in the lab, and they learned the names better."

"It's not about words you know, but words you're going to learn," Samuelson adds.

Lynn Perry, who helped design the study and analyze the data as part of her doctoral studies at the UI, is the first author on the paper. Johanna Burdinie, who was an UI undergraduate during the project, is a contributing author.

The National Institutes of Health (grant number: R01 HD045713) funded the research. Burdinie was funded by a fellowship from the Iowa Center for Research for Undergraduates.

Richard Lewis | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: 16-month-old MESSy Messy children Toddlers

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>