Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory and Alzheimer's: Towards a better comprehension of the dynamic mechanisms

01.09.2014

Research by Dr. Sylvain Williams shows that the flow of activity in the hippocampus, a brain region essential for memory, is actually bidirectional, rather than just unidirectional

A study just published in the prestigious Nature Neuroscience journal by, Sylvain Williams, PhD, and his team, of the Research Centre of the Douglas Mental Health University Institute and McGill University, opens the door towards better understanding of the neural circuitry and dynamic mechanisms controlling memory as well of the role of an essential element of the hippocampus – a sub-region named the subiculum.

In 2009, they developed a unique approach – namely, the in vitro preparation of a hippocampal formation. Now, the research team of Dr. Williams has succeeded in demonstrating in mice that, contrary to what has been thought to be the case for a hundred years, the flow of activity linked to memory in the hippocampus is not unidirectional and that the subiculum is not simply the exit point of this flow.

At the heart of memory

Memories form the very core of our identity. Despite this, the creation and retrieval of memories are phenomena that are not yet well understood. The neural circuitry underlying learning and memory are studied primarily because of their fundamental role in memory and diseases affecting it, such as Alzheimer's. The work of Dr. Williams and his team in the last few years has been concerned with understanding the dynamics of this circuitry. While we can say that the processes of memory encoding and retrieval require the activation of hundreds of thousands of neurons in the hippocampus working together synchronously, we still know very little about the circuits – or "routes" – underlying these processes.

Understanding how neurons of the hippocampus behave will give powerful insights into the anomalies in neural circuitry involved in Alzheimer's disease and schizophrenia and will lead to more targeted interventions.

"It is only by identifying these circuits as well as their dynamic within the hippocampus that we will understand the mechanisms responsible for memory," says Dr. Williams. "Moreover, a better comprehension of the intricate dynamics of these circuits could be used to identify very early changes indicating the development, or future development, of Alzheimer's disease. Indeed, we have recent results that show that, in mouse models of Alzheimer's, these small alterations can appear long before memory loss."

This recent research was able to be undertaken thanks to optogenetics, a revolutionary technique which offers the unique capability to manipulate specific groups of neurons with light to better understand their role in neural circuits and brain rhythms.

The complete article (Reversal of theta rhythm flow through intact hippocampal circuits) is published on August 31in Nature Neuroscience.

###

For other information and interviews:

Florence Meney
Media relations
Communications and Public Affairs
Douglas Mental Health University Institute
Dobell Pavilion, office B-2122
6875 LaSalle Blvd.
Montréal (Québec) H4H 1R3
Tel: 514 761-6131, ext. 2769
Cell : 514-835-3236
florence.meney@douglas.mcgill.ca

About the Douglas Institute

The Douglas is a world-class institute affiliated with McGill University and the World Health Organization. It treats people suffering from mental illness and offers them both hope and healing. Its teams of specialists and researchers are constantly increasing scientific knowledge, integrating this knowledge into patient care, and sharing it with the community in order to educate the public and eliminate prejudices surrounding mental health.

Florence Meney | Eurek Alert!
Further information:
http://www.douglas.qc.ca/?locale=en

Further reports about: Alzheimer's Health McGill Mental Neuroscience circuitry mechanisms neural processes role

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>