Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories Influence The Decision in Choosing Certain Foods

21.05.2015

The better we remember something, the more likely it is that we will decide in favor of it – even if the offering is less attractive than the alternative. In a study regarding the choice of various foods, scientists of the Universitätsklinikum Hamburg-Eppendorf (UKE) and the University of Basle have documented how memory influences decisions. Utilizing brain scans, the scientists were able to show that this influence is based on increased communication between the involved areas of the brain. The results of their study have now been published in the scientific journal, Neuron.

“Many of our daily decisions, such as the selection of a restaurant for a meal, are based on the recollection of relevant information from our memory. Until recently, however, the neuronal and cognitive mechanisms of such decisions had hardly been researched,” explains Prof. Dr. Christian Büchel, the director of the Institute for Systemic Neurosciences at the UKE.

It is known that the hippocampus, a classic “memory region,” and the ventromedial prefrontal cortex in the frontal lobes, a “decision-making region,” are involved in these brain processes.

In the study, thirty young, and hungry test participants had to solve a task in which they first had to rate 48 snacks – such as potato chips and chocolate bars, salty snacks and chewing gum –based on their preferences. Afterwards, they were placed in a magnetic resonance scanner and had to choose repeatedly between two food offerings.

The snacks were presented to them on a computer monitor in conjunction with certain locations. However, during the decision-making process they were only shown the locations, so that the test participants had to remember the associated snacks.

The result showed that the test participants tended to prefer snacks that they could remember better. What’s more: snacks that were better remembered were chosen even if they were comparatively unattractive, i.e. when the test participants initially gave them a low rating.

The only snacks not chosen at all were those that had been strongly rejected by the respective test taker. In the comparison group, which was also comprised of 30 test participants, snacks were shown directly as an image – here, the initial rating usually matched with their subsequent choice.

The research group examined the neuronal mechanisms of memory-based decisions by utilizing functional magnetic resonance imaging (fMRI). They developed a mathematical model that illustrated the decision-making process, taking into consideration the influence of the memory.

This allowed the scientists to determine the strength of the memory-based activation during storage in the hippocampus. An analysis of the activation during the decisions showed that an increased communication takes place between the hippocampus and the ventromedial prefrontal cortex.

“Our research constitutes a bridge between two central fields of research in psychology, the research of memory, and decision-making processes,” explains the initial author of the study, Dr. Sebastian Gluth, formerly of the Institute for Systemic Neurosciences at the UKE, now of the faculty for Psychology at the University of Basle.

Furthermore, the combination of mathematical modeling and brain scans provides an accurate understanding of which areas of the brain are involved in which psychological sub-processes and how the various areas interact. The study was developed in cooperation with Dr. Tobias Sommer, and Prof. Dr. Christian Büchel, both also working at the Institute for Systemic Neurosciences at the UKE, and Prof. Jörg Rieskamp, of the faculty for Psychology at the University of Basle.

Literature:
Sebastian Gluth, Tobias Sommer, Jörg Rieskamp, and Christian Büchel Effective connectivity between hippocampus and ventromedial prefrontal cortex controls preferential choices from memory, Neuron 2015, epub ahead of print. DOI: http://dx.doi.org/10.1016/j.neuron.2015.04.023

Contact:
Prof. Dr. Christian Büchel
Institute for Systemic Neurosciences
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telephone: (040) 7410-54726
E-Mail: buechel@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft
Further information:
http://www.uke.de

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>