Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring segments of genetic material may help predict and monitor recurrence after thyroid cancer

28.10.2013
A new analysis has found that the presence of short segments of genetic material (known as microRNA) within papillary thyroid cancer tumors suggests a likelihood of recurrence after patients undergo surgery.

The study, which is published early online in CANCER, a peer-reviewed journal of the American Cancer Society, also found that elevated blood levels of the genetic material after surgery may indicate a higher possibility of recurrence after thyroidectomy.

MicroRNAs are copies of very short segments of genetic material that modulate gene expression. Researchers have found that dysregulation of microRNAs may play a role in the development of cancer, and microRNA profiles or "signatures" may be used to classify different types of thyroid tumors.

By studying tumor tissue from patients with papillary thyroid cancer, the most common endocrine malignancy, PhD candidate James Lee*, MBBS, FRACS, of the Kolling Institute of Medical Research and University of Sydney in Australia, under supervision from Professor Stan Sidhu, and his colleagues found that high levels of two specific microRNAs (microRNA-222 and -146b) within tumors indicated that cancer was more likely to recur after patients' tumors were surgically removed.

"This kind of test may help doctors select which patients may need more aggressive additional treatment after surgery, or be monitored more closely after initial treatment," said Lee. "As most patients with papillary type thyroid cancer do very well with standard treatment, we are always working on ways to help us select the small group that do not fair so well so we can use our medical resources more efficiently and minimize interruptions to patients' lives."

Also, the same two microRNAs were present at high levels in the blood of thyroid cancer patients compared with healthy individuals, but after thyroid surgery, the blood levels in the patients fell to normal levels. "This suggests that we may be able to track the presence of papillary thyroid cancer by a microRNA blood test," said Lee.

Dr. Lee added that the current blood test for the detection of recurrent papillary thyroid cancer is not accurate in up to a quarter of patients either because of interference from the patients' antibodies or other cancer-related factors. "Therefore, an alternative blood test measuring microRNA levels would be a great complement to what is already available," he said. Blood levels of the microRNAs may not be a good initial diagnostic tool for papillary thyroid cancer, though, because study participants with multinodular goiter, which is a common non-cancer thyroid condition, also had elevated levels in their blood. Also, the specific threshold miRNA level at which additional treatment would be warranted remains to be clarified.

Follow-up studies are needed to see if blood levels of microRNA-222 and microRNA-146b actually do increase when cancer recurs. Also, the accuracy of both tests—performed on tumors and on blood samples—needs to be improved before the tests can become clinically useful.

*Dr. Lee is currently at the Alfred Hospital, Monash Partners Academic Health Science Center.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>