Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster study unveils lifeline for 'antibiotic of last resort'

12.04.2010
Researchers identify the specific mechanism that triggers resistance to vancomycin

A new study led by the scientific director of the Michael G. DeGroote Institute for Infectious Disease Research has uncovered for the first time how bacteria recognize and develop resistance to a powerful antibiotic used to treat superbug infections.

Gerry Wright, a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University in collaboration with colleagues at the John Innes Centre in Norwich, and the University of Cambridge in the UK, have identified the specific mechanism that triggers resistance to vancomycin.

The discovery reveals new understanding about what is happening at the molecular level in vancomycin resistance. It also represents an essential first step in developing new antibiotics that can evade the sensing mechanism of bacteria and overcome resistance.

The research, funded in part by the Canadian Institutes of Health Research and the Canada Research Chairs program, will be published online in the high-impact journal Nature Chemical Biology on April 11, 2010.

"Vancomycin is the antibiotic of last resort and is only given when all other treatments fail," said Wright, who holds the Canada Research Chair in Molecular Studies of Antibiotics and an endowed research Chair in Infection and Anti-Infective Research.

"For years it was thought that resistance would be slow to emerge since vancomycin works in an unusual way. But with the widespread use of the drug to treat infections caused by the hospital superbug MRSA, it has become a serious clinical problem."

MRSA is the short-form for methicillin-resistant staphylococcus aureus, a bacterial infection that is highly resistant to some antibiotics. MRSA bacteria are responsible for a large percentage of hospital-acquired staph infections, but may also be acquired in the community.

Vancomycin is used to treat enterococcal infections that develop in patients following abdominal surgery. Enterococcal bacteria first developed resistance to vancomycin in 1986 and the first case of vancomycin-resistant MRSA (VMRSA) was reported in 2002.

For 20 years, scientists around the world have debated whether bacteria sense the drug itself to trigger resistance or whether they sense the impact it has on the cell wall of bacteria.

Most antibiotics work by inhibiting an enzyme but vancomycin binds to cell wall building blocks, causing a weakness in the structure of the cell wall so the cell bursts and dies.

Some scientists believed that bacteria detect the cell wall degradation to trigger resistance. Others argued that bacteria detect the presence of the drug directly.

Wright and his team studied the vancomycin-resistance mechanism in the harmless soil bacteria Streptomyces coelicolor.

The scientists showed that bacteria detect vancomycin itself. They also conducted preliminary experiments that suggest the same mechanism exists in disease causing bacteria.

"We have finally cracked the alarm system used by bacteria, and hopefully new antibiotics can be developed that don't set it off," said Mark Buttner, a study collaborator and senior scientist at the John Innes Centre.

Marc Ouellette, scientific director of the Institute of Infection and Immunity at the Canadian Institutes for Health Research (CIHR), said the research findings shed new light on the antibiotic resistance issue.

"Thousands of Canadians die every year from antibiotic-resistant infections," Ouellette said. "This issue has long been a priority of the CIHR and this exciting work expands our understanding of how bacteria develop resistance to antibiotics. It lays the groundwork for developing new therapies to prevent and treat antibiotic-resistant infections."

Additional research support was received from the Biotechnology and Biological Sciences Research Council of the UK, the Royal Society and the Medical Research Council (UK).

A photo of Dr. Wright can be downloaded at http://fhs.mcmaster.ca/media/media_20100409.html

For more information, please contact:

Gerry Wright, PhD, professor, Department of Biochemistry and Biomedical Sciences at McMaster University

(289) 439-0325 or wrightge@mcmaster.ca

Susan Emigh, Director, Health Sciences Public Relations, McMaster University
905-518-3642 or emighs@mcmaster.ca
Veronica McGuire, Media Relations Coordinator, Faculty of Health Sciences, McMaster University

905-525-9140, ext. 22169, vmcguir@mcmaster.ca

Susan Emigh | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>