Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet helps target transplanted iron-loaded cells to key areas of heart

27.06.2012
Optimal stem cell therapy delivery to damaged areas of the heart after myocardial infarction has been hampered by inefficient homing of cells to the damaged site.
However, using rat models, researchers in France have used a magnet to guide cells loaded with iron oxide nanoparticles to key sites, enhancing the myocardial retention of intravascularly delivered endothelial progenitor cells.

The study is published in a recent issue of Cell Transplantation (21:4), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/,

"Cell therapy is a promising approach to myocardial regeneration and neovascularization, but currently suffers from the inefficient homing of cells after intracavitary infusion," said Dr. Philippe Menasche of the INSERM U633 Laboratory of Surgical Research in Paris. "Our study was aimed at improving and controlling homing by loading human cord-blood-derived endothelial progenitor cells (EPCs) for transplant with iron oxide nanoparticles in order to better position and retain them in the hearts of myocardial-injured test rats by using a subcutaneously implanted magnet."

The researchers found that the cells were sufficiently magnetic to be able to be remotely manipulated by a magnet subsequent to implantation.

According to the researchers, an objective assessment of the technique to enhance the homing of circulating stem cells is the ability to track their fate in vivo. This was accomplished by visualization with MRI.

"We found a good correlation between MRI non-invasive follow-up of the injected cells and immunofluoresence or quantitative PCR data," said Dr. Menasche. The researchers concluded that further studies were needed to follow cell homing at later time points. They noted that the magnitude of homing they experienced may have been reduced by the relatively small number of cells used, owing to their large size and the subsequent risk of coronary thrombosis.

"In a rat model of myocardial infarction, this pilot study suggested homing of circulating stem cells can be improved by magnetic targeting and warrants additional benchwork to confirm the validity of concept," said Dr. Menasche. "There is also a need to optimize the parameters of targeting and assess the relevance of this approach in a clinically relevant large animal model."

"This study highlights the use of magnets to target transplanted cells to specific sites which could increase their regenerative impact. Factors to still be extensively tested include confirming the safety of the cells containing the magnetic particles and whether this process alters the cell's abilities" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

Contact: Phillipe Menasche, INSERM U633, Laboratory of Surgical Research, Paris, France Email philippe.menasche@egp.aphp.fr

Citation: Chaudeurge, A.; Wilhelm, C.; Chen-Tournoux, A.; Farahmand, P.; Bellamy, V.; Autret, G.; Ménager, C.; Hagège, A.; Larghéro, J.; Gazeau, F.; Clément, O.; Menasché, P. Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention? Cell Transplant. 21 (4):679-691; 2012.

The Coeditor-in-chief's for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact Camillo Ricordi, MD at ricordi@miami.edu, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>