Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lubricant for oil tankers

24.01.2019

If ship hulls were coated with special high-tech air trapping materials, up to one percent of global CO2 emissions could be avoided. This is the conclusion reached by scientists from the University of Bonn together with colleagues from St. Augustin and Rostock in a recent study. According to the study, ships could save up to 20 percent of fuel as a result of reduced drag. If so-called antifouling effects are also considered, such as the reduced growth of organisms on the hull, the reduction can even be doubled. The study has now been published in the journal “Philosophical Transactions A”.

Ships are among the worst fuel guzzlers in the world. Together, they burn an estimated 250 million tonnes per year and emit around one billion tonnes of carbon dioxide into the air - about the same amount as the whole of Germany emits over the same period.


The aquatic fern Salvinia molesta traps underwater in a thin layer of air, which it can hold for many weeks.

© Prof. Dr. Wilhelm Barthlott/Uni Bonn


Scanning electron microscope image of a surface that is modeled on that of Salvinia.

© Prof. Dr. Wilhelm Barthlott/Uni Bonn

The main reason for this is the high degree of drag between hull and water, which constantly slows the ship down. Depending on the type of ship, drag accounts for up to 90 percent of energy consumption. This also makes it a huge economic factor: After all, fuel consumption is responsible for half of transport costs.

Drag can be significantly reduced using technical tricks. For example, the so-called “microbubbles technology” actively pumps air bubbles under the hull. The ship then travels over a bubble carpet, which reduces drag. However, the production of the bubbles consumes so much energy that the total savings effect is very small.

Coatings retain air for weeks

Novel high-tech coatings may promise a solution. They are able to hold air for long periods of even weeks. “Around ten years ago, we were already able to demonstrate on a prototype that in principle it is possible to reduce drag by up to ten percent,” explains Dr. Matthias Mail from the Nees Institute for Biodiversity of Plants at the University of Bonn, one of the authors of the study. “Our partners at Rostock University later achieved a 30-percent reduction with another material developed by us.”

Since then, various working groups have taken up the principle and developed it further. The technology is not yet mature enough for practical use. Nevertheless, the authors forecast a fuel-saving potential of at least five percent in the medium term, but more likely even 20 percent.

In their publication in the renowned “Philosophical Transactions” of the British Royal Society, founded by Isaac Newton, they calculated the economic and ecological advantages this would bring. For example, a commercial container ship on its way from Baltimore (USA) to Bremerhaven could reduce its fuel costs by up to 160,000 US dollars. Worldwide, emissions of the greenhouse gas carbon dioxide would be reduced by a maximum of 130 million tonnes.

Taking into account the reduced growth of barnacles and other aquatic organisms, which causes enormous additional drag loss, this quantity even rises to almost 300 million tonnes. This corresponds to almost one percent of global CO2 emissions. “Of course, these figures are optimistic,” says Mail. “But they show how much potential this technology has.”

Hydrophobic floating fern

The high-tech layers are based on models from nature, such as the floating fern Salvinia molesta. This is extremely hydrophobic: When submerged and pulled out again, the liquid rolls off it immediately. After that, the plant is completely dry.

Or to be more accurate: It was never really wet in the first place. Because underwater the fern wraps itself in an extremely thin dress of air. This prevents the plant from coming into contact with liquid - even during a many weeks-long dive. Scientists call this behavior “superhydrophobic”.

Salvinia has tiny egg-beater-like hairs on the surface of its leaves. These are water-repellent at their base, but hydrophilic at their tip. With these hair-tips, the aquatic fern firmly “pins” a water layer around itself. Its little dress of trapped air kept in place by the water layer. Perhaps this principle will soon cause a sensation in a completely different context: as a potent lubricant for oil tankers.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Wilhelm Barthlott
Nees-Institut für Biodiversität der Pflanzen
University of Bonn
Tel.: +49 (0)228-73 2271
E-mail: barthlott@uni-bonn.de

Originalpublikation:

J. Busch, W. Barthlott, M. Brede, W. Terlau, M. Mail: Bionics and green technology in maritime shipping: an assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction. Phil. Trans. R. Soc. A 377: 20180263. http://dx.doi.org/10.1098/rsta.2018.0263

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Studies and Analyses:

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

nachricht Forest Bird Community is endangered in South America
12.02.2019 | Humboldt-Universität zu Berlin

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>