Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logging and burning cause the loss of 54 million tons of carbon a year in Amazonia

09.07.2014

Loss is equivalent to 40 percent of that caused by overall deforestation

A study conducted by scientists in Brazil and the United Kingdom has quantified the impact that selective logging, partial destruction by burning, and fragmentation resulting from the development of pastures and plantations have had on the Amazon rainforest.

In combination, these factors could be removing nearly 54 million tons of carbon from the forest each year, introduced into the atmosphere as greenhouse gases. This total represents up to 40% of the carbon loss caused by deforestation in the region.

The study, which was conducted by 10 researchers from 11 institutions in Brazil and the United Kingdom, was published in the May issue of the journal Global Change Biology.

"The impacts of timber extraction, burning and fragmentation have received little notice because all the efforts have been focused on preventing further deforestation. This attitude has resulted in tremendous progress in conserving the Brazilian Amazon, whose deforestation rate fell more than 70% over the past 10 years.

However, our study has shown that this other type of degradation is having a severe impact on the forest, with enormous quantities of previously stored carbon being lost into the atmosphere," said Erika Berenguer, researcher from the Lancaster Environment Centre at Lancaster University, in the United Kingdom, first author on the study.

According to Joice Ferreira, researcher at the Brazilian Agricultural Research Corporation (Embrapa Amazônia Oriental) in Belém, state of Pará, and second author on the study, one of the reasons that this degradation has gone unnoticed is that it is difficult to monitor. "Satellite imagery allows much easier detection of areas that are totally deforested," she said.

"Our research combined satellite imagery with field study. We conducted a pixel-by-pixel assessment [each pixel in the image corresponds to an area measuring 900 meters squared (m2)] regarding what has happened over the past 20 years. In the field research, we studied 225 plots (each 3,000 m2) in two large regions in an area measuring 3 million hectares [30,000 square meters], which we used as a model to estimate what occurred in the Amazon as a whole," Ferreira explained.

The satellite images, compared every two years, have enabled researchers to put together an extensive overview of the degradation of the forest along a 20-year timeline. The field research assessed scarring from burning, timber extraction and other disturbances. The combination of the two investigations resulted in the estimate of carbon stock available today.

Two regions were studied in loco: Santarém and Paragominas, in the eastern part of the Amazon region, both under strong degradation pressures. Two hundred twenty-five areas were investigated in these two regions.

"We collected data from more than 70,000 trees and took more than 5,000 samples of soil, dead wood and other components of what is known as carbon stock. It was the largest study conducted to date regarding carbon loss from tropical forests due to selective logging and wildfires," Ferreira said.

According to her, the research included four of the five functionally distinct carbon pools whose study is recommended by the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC): aboveground biomass (live plants), dead organic matter, leaf litter (layer that contains a combination of fragments of leaves, branches and other decomposing organic matter) and soil (up to 30 centimeters (cm) in depth). "The only thing we didn't measure was the carbon stock in the roots," she said.

For comparative purposes, five categories of forest were considered: primary (totally intact) forest; forest affected by logging; forest affected by fires; forest affected by selective logging and fires; and secondary forests (regenerating after complete clearance).

The forests that were disturbed by logging or fire had from 18% to 57% less carbon than primary forests. One area of primary forest ended up having more than 300 tons of carbon per hectare, while areas of forest that had been burned or subjected to timber extraction had, at most, 200 tons per hectare and, on average, less than 100 tons of carbon per hectare.

In addition to the researchers already mentioned, the Global Change Biology article was co-authored by Toby Alan Gardner (University of Cambridge and the Stockholm Environment Institute), Carlos Eduardo Cerri and Mariana Durigan (Luis de Queiroz College of Agriculture/USP), Luiz Eduardo Oliveira e Cruz de Aragão (National Institute for Space Research and the University of Exeter), Raimundo Cosme de Oliveira Junior (Embrapa Amazônia Oriental) and Ima Célia Guimarães Vieira (Emílio Goeldi Museum of Pará).

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: Change Environment atmosphere degradation extraction forests hectare timber

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>