Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LLNL scientists find precipitation, global warming link

12.11.2013
The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe.

A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.


Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities.

Emissions of heat-trapping and ozone-depleting gases affect the distribution of precipitation through two mechanisms. Increasing temperatures are expected to make wet regions wetter and dry regions drier (thermodynamic changes); and changes in atmospheric circulation patterns will push storm tracks and subtropical dry zones toward the poles.

"Both these changes are occurring simultaneously in global precipitation and this behavior cannot be explained by natural variability alone," said LLNL's lead author Kate Marvel. "External influences such as the increase in greenhouse gases are responsible for the changes."

The team compared climate model predications with the Global Precipitation Climatology Project's global observations, which span from 1979-2012, and found that natural variability (such as El Niños and La Niñas) does not account for the changes in global precipitation patterns. While natural fluctuations in climate can lead to either intensification or poleward shifts in precipitation, it is very rare for the two effects to occur together naturally.

"In combination, manmade increases in greenhouse gases and stratospheric ozone depletion are expected to lead to both an intensification and redistribution of global precipitation," said Céline Bonfils, the other LLNL author. "The fact that we see both of these effects simultaneously in the observations is strong evidence that humans are affecting global precipitation."

Marvel and Bonfils identified a fingerprint pattern that characterizes the simultaneous response of precipitation location and intensity to external forcing.

"Most previous work has focused on either thermodynamic or dynamic changes in isolation. By looking at both, we were able to identify a pattern of precipitation change that fits with what is expected from human-caused climate change," Marvel said.

By focusing on the underlying mechanisms that drive changes in global precipitation and by restricting the analysis to the large scales where there is confidence in the models' ability to reproduce the current climate, "we have shown that the changes observed in the satellite era are externally forced and likely to be from man," Bonfils said.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Studies and Analyses:

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

nachricht Approaching the perception of touch in the brain
27.11.2019 | Max Planck Institute for Human Cognitive and Brain Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>