Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Liquid Pistons” Could Drive New Advances in Camera Lenses and Drug Delivery

12.01.2011
Versatile Liquid Pistons Developed at Rensselaer Polytechnic Institute Have No Solid Moving Parts, Essentially Eliminating Wear

A few unassuming drops of liquid locked in a very precise game of “follow the leader” could one day be found in mobile phone cameras, medical imaging equipment, implantable drug delivery devices, and even implantable eye lenses.

Engineering researchers at Rensselaer Polytechnic Institute have developed liquid pistons, in which oscillating droplets of ferrofluid precisely displace a surrounding liquid. The pulsating motion of the ferrofluid droplets, which are saturated with metal nanoparticles, can be used to pump small volumes of liquid. The study also demonstrated how droplets can function as liquid lenses that constantly move, bringing objects into and out of focus.

These liquid pistons are highly tunable, scalable, and – because they lack any solid moving parts – suffer no wear and tear. The research team, led by Rensselaer Professor Amir H. Hirsa, is confident this new discovery can be exploited to create a host of new devices ranging from micro displacement pumps and liquid switches, to adaptive lenses and advanced drug delivery systems.

“It is possible to make mechanical pumps that are small enough for use in lab-on-a-chip applications, but it’s a very complex, expensive proposition,” said Hirsa, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. “Our electromagnetic liquid pistons present a new strategy for tackling the challenge of microscale liquid pumping. Additionally, we have shown how these pistons are well-suited for chip-level, fast-acting adaptive liquid lenses.”

Results of the study are detailed in the paper “Electromagnetic liquid pistons for capillarity-based pumping,” recently published online by the journal Lab on a Chip. The paper will be featured on the cover of the journal’s February 2011 issue, and can be read online at: http://xlink.rsc.org/?DOI=c0lc00397b

See a video of the liquid piston in action at: http://www.youtube.com/watch?v=ms-_NT3eb4I

Hirsa’s team developed a liquid piston that is comprised of two ferrofluid droplets situated on a substrate about the size of a piece of chewing gum. The substrate has two holes in it, each hosting one of the droplets. The entire device is situated in a chamber filled with water.

Pulses from an electromagnet provoke one of the ferrofluid droplets, the driver, to vibrate back and forth. This vibration, in turn, prompts a combination of magnetic, capillary, and inertial forces that cause the second droplet to vibrate in an inverted pattern. The two droplets create a piston, resonating back and forth with great speed and a spring-like force. Researchers can finely control the strength and speed of these vibrations by exposing the driver ferrofluid to different magnetic fields.

In this way, the droplets become a liquid resonator, capable of moving the surrounding liquid back and forth from one chamber to another. Similarly, the liquid piston can also function as a pump. The shift in volume, as a droplet moves, can displace from the chamber an equal volume of the surrounding liquid. Hirsa said he can envision the liquid piston integrated into an implantable device that very accurately releases tiny, timed doses of drugs into the body of a patient.

As the droplets vibrate, their shape is always changing. By passing light through these droplets, the device is transformed into a miniature camera lens. As the droplets move back and forth, the lens automatically changes its focal length, eliminating the usual chore of manually focusing a camera on a specific object. The images are captured electronically, so software can be used to edit out any unfocused frames, leaving the user with a stream of clear, focused video.

The speed and quality of video captured from these liquid lenses has surpassed 30 hertz, which is about the quality of a typical computer web cam. Liquid lenses could mean lighter camera lenses that require only a fraction of the energy demanded by today’s digital cameras. Along with handheld and other electronic devices, and homeland security applications, Hirsa said this technology could even hold the key to replacement eye lenses that can be fine-tuned using only high-powered magnets.

“There’s really a lot we can do with these liquid pistons. It’s an exciting new technology with great potential, and we’re looking forward to moving the project even further along,” he said.

Along with Hirsa, co-authors on the paper are Rensselaer doctoral graduates Bernard Malouin Jr., now with MIT’s Lincoln Laboratory; and Michael Vogel, a private research consultant; Rensselaer mechanical engineering doctoral student Joseph Olles; and former postdoctoral researcher Lili Cheng, now with General Electric Global Research.

This study was supported with funding from the Defense Advanced Research Projects Agency (DARPA).

For more information on Hirsa’s research at Rensselaer, visit:

• Controlling Light With Sound: New Liquid Camera Lens as Simple as Water and Vibration

http://news.rpi.edu/update.do?artcenterkey=2783

• Liquid Lenses Promise Picture-Perfect Phone Cam Photos
http://www.scientificamerican.com/article.cfm?id=liquid-lens
• Low-Power Liquid Lens
http://www.technologyreview.com/computing/21449/?a=f
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>