Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One if by Land, Two if by Sea? Climate Change "Escape Routes"

08.11.2011
Similar movement rates needed for animals and plants on land and in the oceans

Results of a study published this week in the journal Science show how fast animal and plant populations would need to move to keep up with recent climate change effects in the ocean and on land.

The answer: at similar rates.

The study was supported by the National Science Foundation (NSF), and performed in part through the National Center for Ecological Analysis and Synthesis at the University of California at Santa Barbara.

"That average rates of environmental change in the oceans and on land are similar is not such a surprise," says Henry Gholz, program director in NSF's Division of Environmental Biology.

"But averages deceive," Gholz says, "and this study shows that rates of change are at times greater in the oceans than on land--and as complex as the currents themselves."

Greenhouse gases have warmed the land by approximately one degree Celsius since 1960. That rate is roughly three times faster than the rate of ocean warming. These temperatures have forced wild populations to adapt--or to be on the move, continually relocating.

Although the oceans have experienced less warming overall, plants and animals need to move as quickly in the sea as they do on land to keep up with their preferred environments.

Surprisingly, similar movement rates are needed to out-run climate change. On land, movement of 2.7 kilometers (1.6 miles) per year is needed and in the oceans, movement of 2.2 kilometers (1.3 miles) per year is needed.

"Not a lot of marine critters have been able to keep up with that," says paper co-author John Bruno, a marine ecologist at the University of North Carolina at Chapel Hill. "Being stuck in a warming environment can cause reductions in the growth, reproduction and survival of ecologically and economically important ocean life such as fish, corals and sea birds."

"These results provide valuable insights into how climate will affect biological communities worldwide," says David Garrison, director of NSF's Biological Oceanography Program.

The analysis is an example of the value of synthesis research centers, Garrison says, in addressing society's environmental challenges.

"With climate change we often assume that populations simply need to move poleward to escape warming, but our study shows that in the ocean, the escape routes are more complex," says ecologist Lauren Buckley of the University of North Carolina at Chapel Hill, also a co-author of the paper.

"For example, due to increased upwelling, marine life off the California coast would have to move south [rather than north] to remain in its preferred environment."

"Some of the areas where organisms would need to relocate the fastest are important biodiversity hot spots, such as the coral triangle region in southeastern Asia," says lead author Mike Burrows of the Scottish Association of Marine Science.

Whether by land or by sea, according to these results, all will need to be on the fly.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin

19.10.2018 | Earth Sciences

Less animal experiments on the horizon: Multi-organ chip awarded

19.10.2018 | Life Sciences

New method uses just a drop of blood to monitor lung cancer treatment

19.10.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>