Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin study finds clue to birth defects in babies of mothers with diabetes

17.10.2011
Stimulation of metabolism-sensing enzyme that can regulate crucial gene explains how free radicals generated during maternal hyperglycemia cause malformation of the neural tube

In a paper published today in Diabetologia, a team at Joslin Diabetes Center, headed by Mary R. Loeken, PhD, has identified the enzyme AMP kinase (AMPK) as key to the molecular mechanism that significantly increases the risk of neural tube defects such as spina bifida and some heart defects among babies born to women with diabetes.

Even if women with diabetes -- either type 1 or type 2 -- work vigilantly to control their blood sugar levels around the time of conception, the risk of a defect is still twice that of the general population. This finding could lead to strategies to interfere with the mechanism and reduce the chances of such birth defects occurring.

Previous studies published by Loeken's lab showed that maternal hyperglycemia (high blood sugar) causes oxidative stress in the embryo, and inhibits expression of the Pax3 gene. Pax3 is essential to the formation of the neural tube, which in the embryo is the precursor to the brain and spinal cord. Oxidative stress results when oxidized molecules - called free radicals - are created faster than they can be eliminated.

However, Loeken said, it was not known how the cells that express Pax3 could sense the oxidative stress and why oxidative stress, which occurs throughout the embryo, only damages selective structures such as the neural tube.

In the paper published today, Loeken's team identifies the key to the process as AMP kinase, which is activated by oxidative stress and was found to signal the cell nucleus to block the expression of Pax3.

"The stimulation of a metabolism-sensing enzyme that can regulate specific genes explains how oxidative stress, which is generated throughout the embryo during maternal hyperglycemia, causes malformation of specific embryo structures," Loeken said.

"We now know that we must do whatever we can to prevent AMPK from being stimulated," said Loeken, who is a research investigator in Joslin's Section on Islet Cell and Regenerative Biology.

Trying to keep the mother's blood glucose levels under control is currently the only way to do that, she noted. "That's the best we can do right now," she said. But armed with the findings of this study, she noted, other researchers may be able to come up with drugs or other strategies to inhibit AMPK activity,

Dr. Loeken added, however, that formulating a strategy could be tricky because it is not known if interfering with AMPK activity -- while a good thing in preventing neural tube birth defects -- might also have negative effects on the embryo.

In their study Loeken and her group, including Yichao Wu, Marta Viana, and Shoba Thirumangalathu, used mice and cell lines to test their hypothesis that AMPK might be stimulated in the embryo and that stimulation of AMPK was responsible for blocking Pax3 expression and causing neural tube defects in response to high glucose.

"We found in this study that AMPK is stimulated in embryo by both high glucose and oxidative stress," Loeken said.

The study used interventions including a drug that activates AMPK and another that blocks it. The paper showed that a drug that increased AMPK activity mimics the effects of oxidative stress to inhibit expression of Pax3, thus inducing neural tube defects.

This research was supported by a grant from the National Institutes of Health.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit http://www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at http://www.joslin.org/news/inside_joslin.html, Become a fan of Joslin on Facebook at http://www.facebook.com/joslindiabetes and follow Joslin on Twitter at http://www.twitter.com/joslindiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Studies and Analyses:

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Autonomous Agriculture in 2045?
15.11.2019 | Fraunhofer-Institut für Experimentelles Software Engineering IESE

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>