Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing isn't believing

08.09.2011
Pay attention! It's a universal warning, which implies that keeping close watch helps us perceive the world more accurately.

But a new study by Yale University cognitive psychologists Brandon Liverence and Brian Scholl finds that intense focus on objects can have the opposite effect: It distorts perception of where things are in relation to one another. The findings will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science.

"Figuring out where objects are in the world seems like one of the most basic and important jobs the brain does," says Liverence, a graduate student. "It was surprising to discover that even this simple type of perception is warped by our minds." The researchers studied such distortions when people had to focus their attention on some objects, but not others. When they did this, Liverence explains, the "attended objects" were seen as closer together than they really were, while the other objects were seen as farther apart than they really were.

To test this phenomenon, the researchers had people—10 in each of three experiments—complete simple visual tasks. In the one with the most striking results, participants watched four circles as they moved around on a computer monitor while rapidly changing colors. Before the movement began, two of the circles flashed several times; these were the "targets." During the ensuing motion, the participants had to press a key whenever either of those targets turned red or blue. Then, after several seconds of motion, all of the circles disappeared, and the participants clicked with a mouse on the locations they'd last seen the circles.

The subjects located the objects with high accuracy—good news, says Liverence, for people trying to cross the street. But their errors were not random. Instead, the researchers discovered two distortions—one expected, one surprising. As in past research, the reported locations of the circles were all compressed slightly toward the center of the display, as if the mind's representation of the world were slightly shrunk. Beyond this global distortion, though, subjects remembered the two target circles as closer to each other than they actually were (as if they were attracting each other), and reported the other two circles as farther apart than they'd been (as if they were repelling each other).

The findings add to a growing body of cognitive psychology that destabilizes our trust in what we think we know for sure and how we think we can know it more surely. "Attention is the way our minds connect with things in the environment, enabling us to see, remember, and interact with those things," says Liverence. "We tend to think that attention clarifies what's out there. But it also distorts."

For more information about this study, please contact: Brandon M. Liverence at brandon.liverence@yale.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Selective Attention Warps Spatial Representation: Parallel but Opposing Effects on Attended vs. Inhibited Objects" and access to other Psychological Science research findings, please contact Lucy Hyde at 202-293-9300 or lhyde@psychologicalscience.org.

Lucy Hyde | EurekAlert!
Further information:
http://www.psychologicalscience.org

Further reports about: Psychological Science Science TV universal warning visual tasks

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>