Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive kudzu is major factor in surface ozone pollution, study shows

18.05.2010
Kudzu, an invasive vine that is spreading across the southeastern United States and northward, is a major contributor to large-scale increases of the pollutant surface ozone, according to a study published the week of May 17 in the journal Proceedings of the National Academy of Sciences.

Kudzu, a leafy vine native to Japan and southeastern China, produces the chemicals isoprene and nitric oxide, which, when combined with nitrogen in the air, form ozone, an air pollutant that causes significant health problems for humans. Ozone also hinders the growth of many kinds of plants, including crop vegetation.

"We found that this chemical reaction caused by kudzu leads to about a 50 percent increase in the number of days each year in which ozone levels exceed what the Environmental Protection Agency deems as unhealthy," said study co-author Manuel Lerdau, a University of Virginia professor of environmental sciences and biology. "This increase in ozone completely overcomes the reductions in ozone realized from automobile pollution control legislation."

Lerdau and his former graduate student, lead author Jonathan Hickman – now a postdoctoral fellow at Columbia University – used field studies at three sites in Georgia to determine the gas production of kudzu. They then worked with Shiliang Wu and Loretta Mickley, atmospheric scientists at Harvard University, who used atmospheric chemistry computer models to evaluate the potential 50-year effect of kudzu invasion on regional air quality.

"Essentially what we found is that this biological invasion has the capacity to degrade air quality, and in all likelihood over time lead to increases in air pollution, increases in health problems caused by that air pollution, and decreases in agricultural productivity," Lerdau said.

"This is yet another compelling reason to begin seriously combating this biological invasion. What was once considered a nuisance, and primarily of concern to ecologists and farmers, is now proving to be a potentially serious health threat."

Ozone acts as an irritant to the eyes, nose and throat, and can damage the lungs, sometimes causing asthma or worsening asthma symptoms. It also is a mutagen and can cause lung cancer.

Ozone, while essential to the health of the Earth in the upper atmosphere where it shields the surface from excess ultraviolet radiation, is hazardous to human health when it forms at the earth's surface. This occurs most often in the summertime as plants grow and produce chemicals that react with the air.

Introduced to the United States in the late 19th century, kudzu, with its unique nitrogen-fixing physiology, allows a rapid, nearly uninhibited rate of growth, about three times the rate of trees and other vegetation. The vine was cultivated more extensively in the 1920s and 1930s as a control for soil erosion and rapidly became known as "the vine that ate the South."

In recent, milder winters, Kudzu has expanded its range northward into Pennsylvania and New York.

"What was once a Southern problem is now becoming an East Coast issue," Lerdau said.

Various strategies are used for controlling and eradicating kudzu, including livestock grazing, burning, mowing and herbicides.

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

Further reports about: Invasive Gartenameise Kudzu computer model health problems

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>