Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More intersections mean less outdoor activity for children

12.10.2011
High intersection density and well-connected streets in towns and cities may discourage children from being active and exercising outdoors, according to a Queen's University study.

"We've known for a while that high street connectivity—well-connected streets and a high density of intersections in a given area—helps adults stay physically active since it makes it easier and more efficient for them to walk to work or a local store," says Graham Mecredy, the lead researcher and a graduate student in the Department of Community Health and Epidemiology. "However, our findings suggest that high street connectivity has the opposite effect on children's physical activity."

By mapping physical activity results from the 2006 Canadian Health Behaviour in School-aged Children Survey (HBSC) onto street data provided by a geographical information system, the team found that youth aged 11 to 16 years who live in neighbourhoods with streets that are well connected tend to have lower physical activity levels than youth who live in neighbourhoods with streets that are modestly or poorly connected.

"Playing street hockey is an example of how street connectivity and density can influence the physical activity of youth," says Mr. Mecredy. "When traffic increases, or when you don't have access to a quiet cul-de-sac, the game and the associated physical activity may both disappear."

A follow-up study by the same team indicates that while low street connectivity increases children's activity levels, it also results in an increase in minor physical injuries related to bicycle mishaps. The researchers believe that safety initiatives for bicycle use and street designs that encourage bicycle and car separation can help mitigate these incidents.

The team hopes that the findings from both studies will help inform urban and public health policies to improve physical activity among Canadian children.

Other Queen's researchers involved in the studies are Ian Janssen (School of Kinesiology and Health Studies) and William Picket (Community Health and Epidemiology). The results were recently published in the International Journal of Environmental Research and Public Health and Injury Prevention.

Christina Archibald | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Studies and Analyses:

nachricht Detecting mental and physical stress via smartphone
21.11.2019 | Politecnico di milano

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>