Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innate immune system targets asthma-linked fungus for destruction

04.09.2008
A new study shows that the innate immune system of humans is capable of killing a fungus linked to airway inflammation, chronic rhinosinusitis and bronchial asthma.

Researchers at Mayo Clinic and the Virginia Bioinformatics Institute (VBI) have revealed that eosinophils, a particular type of white blood cell, exert a strong immune response against the environmental fungus Alternaria alternata.

The groundbreaking findings, which shed light on some of the early events involved in the recognition of A. alternata by the human immune system, were published recently in the Journal of Immunology.*

Eosinophils typically combat parasitic invaders of the human body larger than bacteria or viruses, such as flukes or parasitic worms (collectively known as helminths). Evidence from different experimental approaches suggests that asthma and chronic sinusitis can arise when the body perceives that it has encountered a disease-causing organism. Environmental fungi such as Alternaria do not typically cause invasive infections like parasites but for some reason, in certain people, the body responds as if it is being attacked and chronic inflammation can result from the ensuing cascade of immune-related events.

Principal Investigator Hirohito Kita, M.D., from Mayo Clinic, remarked: "Our results strongly demonstrate that eosinophils have the capacity to recognize and exert immunological responses to certain fungi such as Alternaria. We have shown that CD11b receptors on the surface of eosinophils recognize and adhere to beta-glucan, a major cell wall component of the fungus. This in turn sets in motion the release of toxic granule proteins by the white blood cells, leading to extensive damage and ultimate destruction of the fungus. To the best of our knowledge, this is the first time that live eosinophils and not just the intracellular components have been shown to target and destroy a fungus."

The researchers used fluorescence microscopy to determine the outcome of the interaction between eosinophils and A. alternata. The contact of fungus with eosinophils resulted in bright red fluorescence due to the damaged fungal cell wall and subsequent death of Alternaria. Immunohistochemistry confirmed the release of toxic granular proteins by eosinophils due to contact with the fungus.

Dr. Chris Lawrence, Associate Professor at VBI and the Department of Biological Sciences at Virginia Tech, remarked: "T helper 2 (Th2) cells in the immune system typically produce cytokine signaling molecules or interleukins that lead to the recruitment of eosinophils for the dysregulated immune response commonly associated with airway inflammatory disorders. Continual exposure of sensitized individuals to common environmental fungi like Alternaria may result in Th2 cells being constantly activated to recruit eosinophils and this sustained defense mechanism results in chronic inflammation. It has been shown previously that degranulation of eosinophils causes damage of airway mucosa and enhances inflammation. The next step in our transdisciplinary research collaboration will be to use recombinant fungal proteins and fungal knockout mutants for specific genes to dissect the different molecular steps involved in the development and progression of this acute immune response."

Hirohito Kita added: "We have taken an important step in showing that the innate immune system of eosinophils is capable of targeting an asthma-associated fungus for destruction. The biological significance of these results will need to be verified further in animal models and in humans and our collaborative efforts with Dr. Lawrence's research group for proteomics and functional genomics will be invaluable in this respect. We suspect that the dysregulated immune responses to Alternaria, other filamentous fungi, and perhaps chitin-encased insects, such as mites and cockroaches, may play a pivotal role in chronic inflammation and the subsequent development of bronchial airway disease."

* Juhan Yoon, Jens U. Ponikau, Christopher B. Lawrence, Hirohito Kita (2008)
Innate Antifungal Immunity of Human Eosinophils Mediated by a â2 Integrin, CD11b. J. Immunol. 181: 2907-2915.

About VBI

The Virginia Bioinformatics Institute (VBI) at Virginia Tech (www.vbi.vt.edu) has a research platform centered on understanding the "disease triangle" of host-pathogen-environment interactions in plants, humans and other animals. By successfully channeling innovation into transdisciplinary approaches that combine information technology and biology, researchers at VBI are addressing some of today's key challenges in the biomedical, environmental and plant sciences.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>