Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Benefit from Implants with More Frequency Sounds

20.05.2014

Research Shows 6-Month-Olds' Ability to Understand Speech Improves When They Hear Less Distortion

A new study from a UT Dallas researcher demonstrates the importance of considering developmental differences when creating programs for cochlear implants in infants.


A UT Dallas researcher studied how 6-month-olds distinguished between speech sounds. Through cochlear implant simulations, she found that infants process speech differently than older children and adults.

Dr. Andrea Warner-Czyz, assistant professor in the School of Behavioral and Brain Sciences, recently published the research in the Journal of the Acoustical Society of America.

“This is the first study to show that infants process degraded speech that simulates a cochlear implant differently than older children and adults, which begs for new signal processing strategies to optimize the sound delivered to the cochlear implant for these young infants,” Warner-Czyz said.

Cochlear implants, which are surgically placed in the inner ear, provide the ability to hear for some people with severe to profound hearing loss. Because of technological and biological limitations, people with cochlear implants hear differently than those with normal hearing.

Think of a piano, which typically has 88 keys with each representing a note. The technology in a cochlear implant can’t play every key, but instead breaks them into groups, or channels. For example, a cochlear implant with 22 channels would put four notes into each group. If any keys within a group are played, all four notes are activated. Although the general frequency can be heard, the fine detail of the individual notes is lost.

Two of the major components necessary for understanding speech are the rhythm and the frequencies of the sound. Timing remains fairly accurate in cochlear implants, but some frequencies disappear as they are grouped.

More than eight or nine channels do not necessarily improve the hearing of speech in adults. This study is one of the first to examine how this signal degradation affects hearing speech in infants.

Infants pay greater attention to new sounds, so researchers compared how long a group of 6-month-olds focused on a speech sound they were familiarized with —“tea”’ — to a new speech sound, “ta.”

The infants spent more time paying attention to “ta,” demonstrating they could hear the difference between the two. Researchers repeated the experiment with speech sounds that were altered to sound as if they had been processed by a 16- or 32-channel cochlear implant.

The infants responded to the sounds that imitated a 32-channel implant the same as when they heard the normal sounds. But the infants did not show a difference with the sounds that imitated a 16-channel implant.

“These results suggest that 6-month-old infants need less distortion and more frequency information than older children and adults to discriminate speech,” Warner-Czyz said. “Infants are not just little versions of children or adults. They do not have the experience with listening or language to fill in the gaps, so they need more complete speech information to maximize their communication outcomes.”

Clinicians need to consider these developmental differences when working with very young cochlear implant recipients, Warner-Czyz said.

Other authors of the study include Dr. Derek Houston from Indiana University School of Medicine and Dr. Linda Hynan from UT Southwestern Medical Center.

This work was supported by a grant from the National Center for Advancing Translational Sciences.

Media Contact: Ben Porter, UT Dallas, (972) 883-2193, ben.porter@utdallas.edu
or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

Ben Porter | Eurek Alert!
Further information:
http://www.utdallas.edu

Further reports about: Advancing Frequency Translational cochlear difference frequencies hearing implants sounds

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>