Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor plants found to release volatile organic compounds

07.09.2009
Study indicates need for further research to determine environmental, health impacts

Potted plants add a certain aesthetic value to homes and offices, bringing a touch of nature to indoor spaces. It has also been shown that many common house plants have the ability to remove volatile organic compounds—gases or vapors emitted by solids and liquids that may have adverse short- and long-term health effects on humans and animals—from indoor air.

But take heed when considering adding some green to your environment; in addition to giving off healthy oxygen and sucking out harmful VOCs, a new study shows that some indoor plants actually release volatile organic compounds into the environment.

A research team headed by Stanley J. Kays of the University of Georgia's Department of Horticulture conducted a study to identify and measure the amounts of volatile organic compounds (VOCs) emitted by four popular indoor potted plant species. The study, published in the American Society for Horticultural Science journal HortScience, also noted the source of VOCs and differences in emission rates between day and night.

The four plants used in the study were Peace Lily (Spathiphyllum wallisii Regel), Snake Plant (Sansevieria trifasciata Prain), Weeping Fig (Ficus benjamina L.), and Areca Palm (Chrysalidocarpus lutescens Wendl.). Samples of each plant were placed in glass containers with inlet ports connected to charcoal filters to supply purified air and outlet ports connected to traps where volatile emissions were measured. The results were compared to empty containers to verify the absence of contaminants. A total of 23 volatile compounds were found in Peace Lily, 16 in Areca Palm, 13 in Weeping Fig, and 12 in Snake Plant. Some of the VOCs are ingredients in pesticides applied to several species during the production phase.

Other VOCs released did not come from the plant itself, but rather the micro-organisms living in the soil. "Although micro-organisms in the media have been shown to be important in the removal of volatile air pollutants, they also release volatiles into the atmosphere", Kays stated. Furthermore, 11 of the VOCs came from the plastic pots containing the plants. Several of these VOCs are known to negatively affect animals.

Interestingly, VOC emission rates were higher during the day than at night in all of the species, and all classes of emissions were higher in the day than at night. The presence of light along with many other factors effect synthesis, which determines the rate of release.

The study concluded that "while ornamental plants are known to remove certain VOCs, they also emit a variety of VOCs, some of which are known to be biologically active. The longevity of these compounds has not been adequately studied, and the impact of these compounds on humans is unknown."

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/396

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>