Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing neurogenesis might prevent drug addiction and relapse

01.03.2010
Researchers at UT Southwestern Medical Center hope they have begun paving a new pathway in the fight against drug dependence.

Their hypothesis – that increasing the normally occurring process of making nerve cells might prevent addiction – is based on a rodent study demonstrating that blocking new growth of specific brain nerve cells increases vulnerability for cocaine addiction and relapse.

The study's findings, available in the Journal of Neuroscience, are the first to directly link addiction with the process, called neurogenesis, in the region of the brain called the hippocampus.

While the research specifically focused on what happens when neurogenesis is blocked, the scientists said the results suggest that increasing adult neurogenesis might be a potential way to combat drug addiction and relapse.

"More research will be needed to test this hypothesis, but treatments that increase adult neurogenesis may prevent addiction before it starts, which would be especially important for patients treated with potentially addictive medications," said Dr. Amelia Eisch, associate professor of psychiatry at UT Southwestern and senior author of the study. "Additionally, treatments that increase adult neurogenesis during abstinence might prevent relapse."

Increasingly, addiction researchers have recognized that some aspects of the condition – such as forming drug-context associations – might involve the hippocampus, which is a region of the brain associated with learning and memory. Only with recent technological advances have scientists been able to test their theories in animals by manipulating the birth of new nerve cells in the hippocampus of the adult brain.

Physical activity and novel and enriched environments have been shown in animal studies to be good for the brain in general, but more research is needed to see if they can increase human adult neurogenesis.

Dr. Eisch and her colleagues used advanced radiation delivery techniques to prevent hippocampal neurogenesis. In one experiment, rats were allowed to self-administer cocaine by pressing a lever. Rats with radiated brains took more cocaine and seemed to find it more rewarding than rats that did not receive radiation.

In a second experiment, rats first self-administered cocaine and then received radiation to decrease neurogenesis during a period of time that they were without drugs. Rats with reduced neurogenesis took more time to realize that a drug lever was no longer connected to the drug dispenser.

"The nonirradiated rats didn't like the cocaine as much and learned faster to not press the formerly drug-associated lever," Dr. Eisch said. "In the context of this experiment, decreased neurogenesis fueled the process of addiction, instead of the cocaine changing the brain."

Dr. Eisch said she plans to do similar studies with other drugs of abuse, using imaging technology to study addiction and hippocampal neurogenesis in humans.

"If we can create and implement therapies that prevent addiction from happening in the first place, we can improve the length and quality of life for millions of drug abusers, and all those affected by an abuser's behavior," she said.

Another study author from UT Southwestern was Sarah Bulin, a graduate student research assistant. Other researchers involved in the work include Dr. Michele Noonan, former graduate research assistant in psychiatry, and Dwain Fuller from the VA North Texas Health Care System.

The study was funded by the National Institute on Drug Abuse.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in the neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>