Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing dopamine in brain's frontal cortex decreases impulsive tendency, UCSF-Gallo study finds

26.07.2012
Raising levels of the neurotransmitter dopamine in the frontal cortex of the brain significantly decreased impulsivity in healthy adults, in a study conducted by researchers at the Ernest Gallo Clinic and Research Center at the University of California, San Francisco.

"Impulsivity is a risk factor for addiction to many substances, and it has been suggested that people with lower dopamine levels in the frontal cortex tend to be more impulsive," said lead author Andrew Kayser, PhD, an investigator at Gallo and an assistant professor of neurology at UCSF. "We wanted to see if we could decrease impulsivity by raising dopamine, and it seems as if we can."

The study was published on July 4 in the Journal of Neuroscience.

In a double-blinded, placebo-controlled study, 23 adult research participants were given either tolcapone, a medication approved by the Food and Drug Administration (FDA) that inhibits a dopamine-degrading enzyme, or a placebo. The researchers then gave the participants a task that measured impulsivity, asking them to make a hypothetical choice between receiving a smaller amount of money immediately ("smaller sooner") or a larger amount at a later time ("larger later"). Each participant was tested twice, once with tolcapone and once with placebo.

Participants – especially those who were more impulsive at baseline – were more likely to choose the less impulsive "larger later" option after taking tolcapone than they were after taking the placebo.

Magnetic resonance imaging conducted while the participants were taking the test confirmed that regions of the frontal cortex associated with decision-making were more active in the presence of tolcapone than in the presence of placebo.

"To our knowledge, this is the first study to use tolcapone to look for an effect on impulsivity," said Kayser.

The study was not designed to investigate the reasons that reduced dopamine is linked with impulsivity. However, explained Kayser, scientists believe that impulsivity is associated with an imbalance in dopamine between the frontal cortex, which governs executive functions such as cognitive control and self-regulation, and the striatum, which is thought to be involved in the planning and modification of more habitual behaviors.

"Most, if not all, drugs of abuse, such as cocaine and amphetamine, directly or indirectly involve the dopamine system," said Kayser. "They tend to increase dopamine in the striatum, which in turn may reward impulsive behavior. In a very simplistic fashion, the striatum is saying 'go,' and the frontal cortex is saying 'stop.' If you take cocaine, you're increasing the 'go' signal, and the 'stop' signal is not adequate to counteract it."

Kayser and his research team plan a follow-up study of the effects of tolcapone on drinking behavior. "Once we determine whether drinkers can safely tolerate this medication, we will see if it has any effect on how much they drink while they're taking it," said Kayser.

Tolcapone is approved as a medication for Parkinson's disease, in which a chronic deficit of dopamine inhibits movement.

Co-authors of the paper are Daicia C. Allen, BS, Ana Navarro-Cebrian, PhD, Jennifer M. Mitchell, PhD and senior author Howard L. Fields, MD, PhD, of the Gallo Center and UCSF.

The study was supported by funds from the Wheeler Center for the Neurobiology of Addiction, the U.S. Army Telemedicine and Advanced Technology Research Center, the Alcoholic Beverage Medical Research Foundation/The Foundation for Alcohol Research and the State of California.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>