Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impulsivity, rewards and Ritalin: Monkey study shows tighter link

14.11.2013
Even as the rate of diagnosis has reached 11 percent among American children aged 4 to 17, neuroscientists are still trying to understand attention deficit hyperactivity disorder (ADHD). One classic symptom is impulsivity — the tendency to act before thinking.

Scientifically, impulsivity can appear as a choice for a small but immediate reward over a larger one that requires some delay. Choosing between present and future rewards is a fundamental need in schooling, says Luis Populin, associate professor of neuroscience at University of Wisconsin-Madison.

"If you say to an impulsive child, 'Do your homework so you will get a good grade at the end of the quarter,' that has less appeal than 'Let's play baseball this afternoon instead of studying chemistry.'"

To study impulsive behavior, Populin and graduate student Abigail Zdrale Rajala selected two rhesus macaque monkeys with opposite behaviors. One was extremely calm, while the other was nervous, fidgety and impulsive. The monkeys were trained to stare at a dot on a screen and, when it went dark, to choose between two pictures placed to the side. Their choice of picture determined whether they got a small but immediate sip of water, or a larger sip, after a delay ranging up to 16 seconds.

As expected, the calm monkey, but not the impulsive one, quickly figured out that waiting would bring the sweeter result.

This willingness to take a smaller reward right away rather than a larger, delayed reward, called "temporal discounting," is a common feature of "combined type" ADHD, which specifically lists impulsivity among its diagnostic criteria, Populin says.

When the monkeys were given a dose of methylphenidate, the active ingredient of the common ADHD drug Ritalin, they chose the delayed reward more frequently. The impulsive monkey actually showed the same preference for delayed rewards as the unmedicated, calm monkey. However, identifiable differences in their performance mean that methylphenidate improved the condition, but did not eliminate it.

"There is no perfect animal model of ADHD," says Rajala, "but many studies are performed on rodents; this one was done in a non-human primate, which is much closer to humans." The Society for Neuroscience adjudged the paper valuable enough to support Rajala's travel to the conference in San Diego.

Methylphenidate changes the elimination of dopamine, a "reward" neurotransmitter that is elevated by drugs like cocaine and amphetamine. The result is that more dopamine remains in the brain, which is the most likely explanation for the altered reward processing in the medicated monkeys.

Some scientists have thought that temporal discounting in ADHD may result from cognitive processing, which relies on the highly evolved frontal cortex in the brain. The new results support an alternative, but less common, hypothesis: that temporal discounting is linked to the reward-processing mechanism, which is governed by more primitive parts of the brain.

By teasing apart one characteristic of ADHD, the study could help refine drug or behavioral treatments of a disability that has grown 16 percent more common just since 2007, Populin says.

David Tenenbaum
608-265-8549
djtenenb@wisc.edu
CONTACT:
Luis Populin
608-265-6451
lpopulin@wisc.edu
Abigail Zdrale Rajala
608-265-6711
azdrale@gmail.com

Luis Populin | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: ADHD Monkey Monkey study Populin frontal cortex impulsivity rhesus macaque monkeys

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>