Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Age's Arctic Tundra Lush with Wildflowers for Woolly Mammoths, Study Finds

11.02.2014
A recent study in the journal Nature finds that nearly 50,000 years ago during the ice age, the landscape was not as drab as once thought -- it was filled with colorful wildflowers. These wildflowers helped sustain woolly mammoths and other giant grazing animals.

The study, "Fifty thousand years of Arctic vegetation and megafauna diet," included Joseph Craine, assistant professor in the Division of Biology at Kansas State University. It was led by the Centre for GeoGenetics at the University of Copenhagen and was a collaboration of more than 25 academic institutions and research laboratories from around the world.

The study looked at 50,000 years of arctic vegetation history to understand how fauna had changed with animals and humans.

Historically, the belief is that the ice age's landscape was covered by largely grass-dominated systems -- called steppe. These grasses were replaced by mosses and other boggy vegetation when the ice age ended nearly 10,000 years ago, Craine said.

For the study, researchers visited museums in Alaska, Canada, Norway and Russia to collect DNA samples from inside the gut of frozen mammoths, bison, horses and rhinoceros that lived in the ice age.

Molecular techniques were used to look for plant DNA in each ancient animal's digestive tract. Plant DNA was then sequenced and reconstructed to differentiate wildflowers from grasses.

"Once the gut contents and soils started getting sequenced, they began finding lots more wildflowers than before," Craine said. "Nearly half of the digested plants were wildflowers. So, rather than having this really grassy, dull system like we believe existed, it suddenly was one that was very colorful."

The study challenges the view that the arctic landscape in the ice age was largely grasslands.

"Part of the scientific debate is knowing what the past looked like," Craine said. "There have always been debates about how a region that's so cold could have supported animals that were so large. Mammoths were huge and lived on these largely barren landscapes. Now we know that they were spending a lot of time eating wildflowers, which have a lot more protein in them than grasses, which means that they could support larger animals."

Craine helped interpret data and the consequences of losing bison and other grazing animals over thousands of years in parts of the world.

Although the findings reframe 50,000 years of the past, they also are applicable to predicting the future, Craine said.

Animals' grazing and climate changes stressed and eventually reshaped the vegetation in the tundra from wildflowers and grasses to moss and marshes, he said.

"The work is important because we can use the past to help us predict the future," Craine said. "But the work really makes us reevaluate how well we understand the diets of modern animals. If we misunderstood what bison and mammoths ate 15,000 years ago, maybe we should look more closely at what bison and elephants eat today. We just might find new surprises."

Joseph Craine | Newswise
Further information:
http://www.k-state.edu

Further reports about: Arctic Ocean DNA Tundra Woolly Adelgid crystalline ice age mammoths wildflowers

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>