Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen fuel for thought

01.10.2010
Rice researchers find metallacarboranes may meet DOE storage goals

New research by Rice University scientists suggests that a class of material known as metallacarborane could store hydrogen at or better than benchmarks set by the United States Department of Energy (DOE) Hydrogen Program for 2015.

The work could receive wide attention as hydrogen comes into play as a fuel of the future for cars, in fuel cells and by industry.

The new study by Rice theoretical physicist Boris Yakobson and his colleagues, which appears in the online Journal of the American Chemical Society, taps the power of transition metals scandium and titanium to hold a load of hydrogen molecules -- but not so tightly that they can't be extracted.

A matrix made of metallacarboranes would theoretically hold up to 8.8 percent of its weight in hydrogen atoms, which would at least meet and perhaps surpass DOE milestones issued a year ago for cars that would run on hydrogen fuel.

Yakobson, a professor in mechanical engineering and materials science and of chemistry at Rice, said inspiration for the new study came from the development of metallacarboranes, now well-known molecules that combine boron, carbon and metal atoms in a cage-like structure.

"A single metal atom can bind multiple hydrogen molecules," Yakobson said, "but metals also tend to aggregate. Without something to hold them, they clump into a blob and are useless."

Abhishek Singh, lead author of the study, a former postdoctoral researcher for Yakobson and now an assistant professor at the Indian Institute of Science in Bangalore, India, calculated that boron clusters would grip the titanium and scandium, which would in turn bind hydrogen. "The metals fit like a gem in a setting, so they don't aggregate," Yakobson said. Carbon would link the clusters to form a matrix called a metal organic framework (MOF), which would act like a sponge for hydrogen.

Investigation of various transition metals showed scandium and titanium to have the highest rate of adsorption (the adhesion of transient molecules -- like hydrogen -- to a surface). Both demonstrate an affinity for "Kubas" interaction, a trading of electrons that can bind atoms to one another in certain circumstances. "Kubas is a special interaction that you often see mentioned in hydrogen research, because it gives exactly the right binding strength," Yakobson said.

"If you remember basic chemistry, you know that covalent bonds are very strong. You can bind hydrogen, but you cannot take it out," he said. "And on the other extreme is weak physisorption. The molecules don't form chemical bonds. They're just exhibiting a weak attraction through the van der Waals force.

"Kubas interaction is in the middle and gives the right kind of binding so hydrogen can be stored and, if you change conditions -- heat it up a little or reduce pressure -- it can be taken out. You want the framework to be like a fuel tank."

Kubas allows for reversible storage of hydrogen in ambient conditions -- ranging from well above to well below room temperature -- and that would make metallacarborane materials highly attractive for everyday use, Yakobson said. Physisorption of hydrogen by the carbon matrix, already demonstrated, would also occur at a much lower percentage, which would be a bit of a bonus, he said.

Other studies have demonstrated how to make carborane-based MOFs. "That means they can already make three-dimensional frameworks of material that are still accessible to gas. This is very encouraging to us," Yakobson said. "There are many papers where people analyze a cluster and say, 'Oh, this will also absorb a hydrogen,' but that's not useful. One cluster is nothing.

"But if chemists can synthesize this particular framework with metallacarborane as an element, this may become a reality."

Arta Sadrzadeh, a graduate student in Yakobson's lab, is a co-author.

Read the abstract here: http://pubs.acs.org/doi/abs/10.1021/ja104544s

Artwork is available here: http://www.media.rice.edu/images/media/NEWSRELS/PR-3.jpg

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Hydrogen MOF chemical bond hydrogen atom hydrogen molecules

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>