Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the woodpecker avoids brain injury despite high-speed impacts via optimal anti-shock body structure

12.08.2014

Designing structures and devices that protect the body from shock and vibrations during high-velocity impacts is a universal challenge.

Scientists and engineers focusing on this challenge might make advances by studying the unique morphology of the woodpecker, whose body functions as an excellent anti-shock structure.


This is a schematic of the pecking process of a woodpecker and the Mises stress at different times: (a) and (e) are moments of readiness to peck; (b) and (d) are the moments of departure and return, respectively; (c) is the moment of collision; arrows on the beaks show velocity direction.

Credit: ©Science China Press

The woodpecker's brain can withstand repeated collisions and deceleration of 1200 g during rapid pecking. This anti-shock feature relates to the woodpecker's unique morphology and ability to absorb impact energy.

Using computed tomography and the construction of high-precision three-dimensional models of the woodpecker, Chinese scientists explain its anti-shock biomechanical structure in terms of energy distribution and conversion.

... more about:
»CT »ability »collisions »small »strain »structure »woodpecker

Their findings, presented in a new study titled "Energy conversion in the woodpecker on successive pecking and its role in anti-shock protection of the brain" and published in the Beijing-based journal SCIENCE CHINA Technological Sciences, could provide guidance in the design of anti-shock devices and structures for humans.

To build a sophisticated 3D model of the woodpecker, scientist Wu Chengwei and colleagues at the State Key Lab of Structural Analysis for Industrial Equipment, part of the Department of Engineering Mechanics at the Dalian University of Technology in northeastern China, scanned the structure of the woodpecker and replicated it in remarkable detail.

"CT scanning technology can be used to obtain the images of internal structures of objects … which is widely used in the medical field and expanded to mechanical modeling of biological tissue," they explain in the study.

"Based on the CT scanning technology (CT scanner, LightSpeed VCT XT, GE, USA), detailed inner structure images of the head were obtained and then imported to Mimics software to form a scattered-points model," they state. "Then a geometric model of the head was set up using the facet feature and remodeling module of Pro/E for the surface fitting. After the geometric repairs, the FE [finite element] model meshed by tetrahedron elements was established using Abaqus software."

The woodpecker's structure was recreated through intricate geometric modeling. "The final FE model has 940000 fine elements with a minimum size of 0.07 mm in the head, 70000 coarse elements with a maximum size of 3.5 mm in the body and 20000 elements with a minimum size of 0.16 mm in the trunk," the researchers state.

Discoveries made during the study could have applications in the design of spacecraft, automobiles, and wearable protective gear, explains Professor Wu.

"High-speed impacts and collisions can destroy structures and materials," Wu states. "In the aerospace industry, spacecraft face the constant danger of collisions with space debris and micrometeoroids," Wu adds. "If a spacecraft's structure or scientific instruments were destroyed by impact, the economic loss would be huge."

In cities worldwide, Wu says, automobile accidents are a persistent threat to human safety, and head injuries are common.

Challenges presented in minimizing these threats and injuries have led to widespread efforts to understand and replicate or improve on anti-shock mechanisms found in nature.

The woodpecker stands out in this field of study: it can peck trees at high frequency (up to 25 Hz) and high speed (up to 7 m/s and 1200 g deceleration) without suffering any brain injury.

"This unique anti-shock ability inspires scientists to uncover the related bio-mechanisms," Wu states, for potential engineering of similar devices and structures based on principles of biomimicry.

Wu and colleagues used 3D models of the woodpecker to test how impact energy was handled by its specially adapted structure.

Figure 1 shows the pecking process of a woodpecker and the Mises stress at different times.

The results showed that the body not only supports the woodpecker to peck on the tree, but also stores the majority of the impact energy in the form of strain energy, significantly reducing the quantity of impact energy that enters the brain.

"Most of the impact energy in the pecking is converted into the strain energy stored in the body (99.7%) and there is only a small fraction of it in the head (0.3%)," the researchers reported.

Structures in the head including the beak, skull, and hyoid bone further reduce the strain energy of the brain. The small fraction of impact energy that enters the brain will be eventually dissipated in form of heat, causing a rapid temperature increment in the brain. As a consequence of this, the woodpecker has to peck intermittently.

###

This research project received funding in the form of grants from the National Science Foundation of China (Grant No. 11272080), the Doctoral Education Foundation of China Education Ministry (Grant No. 20110041110021), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT14LK36).

See the article: Zhu Zhaodan, Zhang Wei and Wu Chengwei. "Energy conversion in the woodpecker on successive peckings and its role on anti-shock protection of the brain."

SCIENCE CHINA Technological Science. 2014, 57(7): 1269-1275. http://link.springer.com/article/10.1007%2Fs11431-014-5582-5

SCIENCE CHINA Technological Science is produced by Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields. http://www.scichina.com/english/

Wu Chengwei | Eurek Alert!

Further reports about: CT ability collisions small strain structure woodpecker

More articles from Studies and Analyses:

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

nachricht Virtual treasure hunt shows brain maps time sequence of memories
06.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>