Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too hot, too cold, just right: Testing the limits of where humans can live

21.02.2011
On an isolated segment of islands in the Pacific Ring of Fire, residents endure volcanoes, tsunamis, dense fog, steep cliffs and long and chilly winters.

Sounds homey, huh?

At least it might be for inhabitants of the Kuril Islands, an 810-mile archipelago that stretches from Japan to Russia. The islands, formed by a collision of tectonic plates, are nearly abandoned today, but anthropologists have learned that thousands of people have lived there on and off as far back as at least 6000 B.C., persevering despite natural disasters.

"We want to identify the limits of adaptability, or how much resilience people have," said Ben Fitzhugh, associate professor of anthropology at the University of Washington. "We're looking at the islands as a yardstick of humans' capacity to colonize and sustain themselves."

Understanding what made residents stay and how they survived could inform how we adapt to modern vulnerabilities, including climate change. The findings also have implications for how we rebound from contemporary catastrophes, such as the Indonesian tsunami in 2004, hurricanes Katrina and Rita and last year's earthquake in Haiti.

Fitzhugh is leading an international team of anthropologists, archaeologists, geologists and earth and atmospheric scientists in studying the history of human settlement on the Kuril Islands.

The team's findings will be discussed Feb. 20 during a lecture, Scales of Vulnerability and Resilience in Human Settlement of the Kuril Islands (http://aaas.confex.com/aaas/2011/webprogram/Session3031.html), at the American Association for the Advancement of Science's annual meeting in Washington, D.C.

The scientists are studying islands in the central portion of the Kurils, from Urup Island in the south to Onekotan Island in the north – about 75 percent of the island chain. During three expeditions, they've found small pit houses, pottery, stone tools, barbed harpoon heads and other remnants of the islanders' fishing and foraging lifestyle.

The scientists believe that human settlements existed in three different waves, the earliest in 6000 B.C., the most recent in 1200 A.D.

Fitzhugh finds evidence that following volcanic eruptions and tsunamis, people left the settlements but eventually returned. Fitzhugh and his research team have found that mobility, social networks and knowledge of the local environment helped indigenous people survive.

"Having relatives and friends on other Kurils meant that, when something disastrous happened locally, people could temporarily move in with relatives on nearby islands," he said.

Understanding the local environment also helped people survive the persistently foggy, dark and chilly environment. Since fog can shroud the islands, residents couldn't navigate between islands by simply pointing their boats toward destinations. Fitzhugh and his collaborators suspect that indigenous Kurilians instead used bird behavior, water currents and water temperature to navigate.

Fitzhugh says that the Kurils' population decline has less to do with environmental challenges and more to do with changes in social and political influences, such as skirmishes between Russia and Japan over control of the Kurils.

He adds that as a global society in a time of environmental changes, we have to protect abilities of small and vulnerable populations to sustain themselves.

"This is not something that will naturally rise to the top of priorities of large political systems without concerted effort," Fitzhugh said.

The work is part of the Kuril Biocomplexity Project, funded by the National Science Foundation and the University of Washington, with additional support from the Russian Academy of Sciences and the Japan Society for the Promotion of Science.

For more information, contact Fitzhugh at fitzhugh@uw.edu or 206-543-9604.

See photos, learn more: http://depts.washington.edu/ikip/index.shtml

Molly McElroy | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>