Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Superinfection in Uganda May Be More Common than Previously Thought, Study Finds

08.06.2012
HIV superinfection, when a person with HIV could acquire a second, new strain of HIV, may occur as often as initial HIV infection in the general population in Uganda, a study suggests.

Since researchers demonstrated more than a decade ago that a person infected with HIV could subsequently acquire a second, new strain of HIV, there has been little agreement in the scientific community as to how often HIV superinfection occurs.

Previous studies have found HIV superinfection to be relatively frequent among individuals who engaged in high-risk behaviors, but the rate of superinfection in general populations remained unclear. The new study, supported in part by the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health, offers some evidence about the likelihood.

In light of the study’s findings, the authors say post-test counseling for individuals newly diagnosed with HIV infection should emphasize the risk of HIV superinfection and the possible health implications of continuing practices that put them at risk for HIV. Studies of the rate of new cases, or annual incidence rates, of HIV superinfection, including those conducted in the United States, estimate 4 percent incidence among highly sexually active people diagnosed with HIV infection.

“This study indicates that HIV superinfection may be more common than was previously thought,” said NIAID Director Anthony S. Fauci, M.D. “These findings have implications for public health strategies to prevent new infections and efforts to develop an HIV vaccine. In addition, they are important because HIV superinfection can accelerate disease progression and the development of drug resistance, even in individuals who were previously controlling their HIV infection.”

The study, published online in the Journal of Infectious Diseases, was led by Thomas C. Quinn, M.D., and Andrew D. Redd, Ph.D., of NIAID’s Laboratory of Immunoregulation, and Maria J. Wawer, M.D., Ph.D., formerly of the Columbia University Mailman School of Public Health, New York City, and now with Johns Hopkins University Bloomberg School of Public Health, Baltimore. Their collaborators included researchers at NIAID’s Rocky Mountain Laboratories, Hamilton, Mont., the Rakai Health Sciences Program in Kalisizo, Uganda, and Makerere University in Kampala, Uganda.

The blood samples examined in the study were from the ongoing NIH-supported Rakai Community Cohort Study (RCCS), a community-based open study of heterosexual men and women ages 15 to 49 years old in rural Rakai District, Uganda. Since 1994, researchers working with the RCCS have been annually conducting interviews and collecting blood samples from approximately 14,000 consenting individuals in 50 Ugandan villages to better understand HIV infection and its risk factors and to develop potential preventive measures.

“Previous studies of HIV superinfection have focused on individuals exposed to the virus through high-risk sexual activity or intravenous drug use,” said lead author Dr. Redd. “We wanted to determine the rate of HIV superinfection among a broader, general population using a novel technique sensitive enough to detect even the lowest levels of circulating HIV strains.”

Using an advanced high-throughput genetic screening method called next-generation ultra-deep sequencing, the scientists examined blood samples from RCCS participants who became HIV infected. The screening was designed to detect differences in the distinctly positioned and relatively restricted p24 and gp41 genes of the virus and could detect a virus that represented as little as 1 percent of the total viruses circulating in the blood if it were of a different HIV subtype, or genetically related subgroup.

The researchers tested two blood samples. The first samples were taken at initial HIV diagnosis between 1998 and 2004, and the second samples were taken at least a year later, before the infected individuals began antiretroviral therapy. The samples were analyzed to find examples where the initial infecting strain did not cluster with viral strains found at a later time, thus confirming HIV superinfection. The rate of superinfection was then compared with an estimated overall HIV incidence rate for the entire population of initially HIV-negative individuals during the same time period.

Of the samples tested from 149 HIV-infected people, the scientists found seven cases of HIV superinfection, all detected in the gp41 region of the virus. Of these cases, four individuals were initially infected and then later superinfected with different strains of HIV subtype D, the most common viral subtype found in Rakai. The other three were initially infected with subtype D and superinfected with a different HIV subtype, subtype A. These findings suggest a rate of superinfection of 1.44 per 100 people annually. The investigators were surprised to find that the rate of superinfection was comparable to the current estimated annual rate of new, initial HIV infections in the Rakai cohort, or 1.15 infections per 100 people per year. HIV superinfection had been thought to be less common than initial infection.

“Our findings suggest that HIV vaccine strategies designed to recreate the natural immune response to HIV may be insufficient to protect an individual from infection,” Dr. Redd noted. “However, the data also provide an interesting new population to explore since it is possible that some individuals will be protected from superinfection. Determining what controls superinfection could lead to new avenues for vaccine research.”

In addition to the support provided by NIAID’s Division of Intramural Research, NIAID provided funding through grant numbers R01-A134826, R01-A134265, and 1K23AI093152-01A1. The Eunice Kennedy Shriver National Institute of Child Health and Human Development, also part of the NIH, provided funding through grant numbers 5P30HD06826 and R01-HD-050180. The NIH-supported HIV Prevention Trials Network provided laboratory support through grant number U01-A1-068613. Further funding support was provided through the NIH Office of AIDS Research, the NIH Fogarty International Center, the Bill & Melinda Gates Foundation, the Henry M. Jackson Foundation and the Doris Duke Charitable Foundation.

For more information about NIAID’s HIV/AIDS research, visit the NIAID HIV/AIDS portal.

References:

AD Redd et al. The rates of HIV-superinfection and primary HIV incidence in a general population in Rakai, Uganda. Journal of Infectious Diseases. DOI: jid325 (2012).

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Tasheema Prince | EurekAlert!
Further information:
http://www.nih.gov
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>