Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History to Blame for Slow Crop Taming: Study

06.05.2014

It’s been about 10,000 years since our ancestors began farming, but crop domestication has taken much longer than expected – a delay caused less by genetics and more by culture and history, according to a new study co-authored by University of Guelph researchers.

The new paper digs at the roots not just of crop domestication but of civilization itself, says plant agriculture professor Lewis Lukens. “How did humans get food? Without domestication – without food – it’s hard for populations to settle down,” he said. “Domestication was the key for all subsequent human civilization.”

The study appears this the current issue of the Proceedings of the National Academy of Sciences.

Lukens and Guelph PhD student Ann Meyer worked on the study with biologists at Oklahoma State University and Washington State University.

Examining crop domestication tells us how our ancestors developed food, feed and fibre leading to today’s crops and products. Examining crop genetics might also help breeders and farmers looking to further refine and grow more crops for an expanding human population.

“This work is largely historical, but there are increasing demands for food production, and understanding the genetic basis of past plant improvement should help future efforts,” he said.

The Guelph team analyzed data from earlier studies of domesticated cereal crop species, and the American scientists also performed field tests.

To study the historical effects of interactions between genes and between genes and the environment, they looked at genes controlling several crop plant traits.

Domestication has yielded modern crops whose seeds resist shattering, such as corn whose kernels stay on the cob instead of falling off. Early agriculturalists also shortened flowering time for crops, necessary in shorter growing seasons as in Canada.

Domestication traits are known to have developed more slowly than expected over the past 10,000 years. The researchers wondered whether genetic factors hindered transmission of genes controlling such traits. Instead, they found that domestication traits are often faithfully passed from parent to progeny, and often more so than ancestral traits, said Lukens.

That suggests cultural and historical factors – anything from war and famine to lack of communication among separated populations – accounted for the creeping rate of domestication.

“We conclude that the slow adaptation of domesticated plants by humans was likely due to historical factors that limited technological progress,” said Lukens.

This research project stemmed from a meeting of anthropologists, archeobotanists and geneticists at the National Evolutionary Synthesis Center in North Carolina.

Contact:
Prof. Lewis Lukens
Department of Plant Agriculture
llukens@uoguelph.ca
519 824-4120, Ext. 52304 or 58164


For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca; or Kevin Gonsalves, Ext. 56982, or kgonsalves@uoguelph.ca

Lewis Lukens | Eurek Alert!
Further information:
http://www.uoguelph.ca

Further reports about: Blame Evolutionary ancestors crop domestication farmers humans populations traits

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>