Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Ford study links 23 microRNAs to laryngeal cancer

14.09.2011
A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

The role of microRNA (miRNA), the small, non-coding RNA molecules that regulate human genes, has recently come into greater focus as researchers continue to understand the cellular mechanics of cancer development, says Kang Mei Chen, M.D., the study's lead author.

"While they may be small, miRNAs are no longer being viewed as just molecular noise," says Dr. Chen, a research investigator in the Department of Otolaryngology – Head & Neck Surgery at Henry Ford Hospital.

"We now recognize miRNAs as bigger players with increasing prominence in theories about cancer."

Findings from the Henry Ford study – supported by a NIH grant – will be presented Tuesday, Sept. 13 in San Francisco at the American Academy of Otolaryngology–Head & Neck Surgery Foundation Annual Meeting.

MiRNA may help cancer researchers unravel the complexities of what happens at the genomic level of cell evolution. It's estimated that there are at least 800 human miRNAs.

Since miRNAs are differentially expressed in various types of cancers compared with noncancerous tissues, researchers believe that they may play a crucial role in the production or formation of tumors.

"By gaining insight into laryngeal cancer, it gives us another level to understand what goes wrong and when cells decide to embark on a tumor genesis journey. From there, it's possible for researchers to look at how to control cancer growth and improve treatment," says co-author Maria J. Worsham, Ph.D., director of research in the Department of Otolaryngology-Head & Neck Surgery at Henry Ford.

The goal of the Henry Ford study was to discover miRNAs specific to laryngeal squamous cell carcinoma – a form of head and neck cancer that starts in the voice box.

Led by Dr. Chen, the researchers performed global miRNA profiling on stored laryngeal squamous cell carcinoma samples, as well as non-cancerous tissue samples from the larynx.

The team then used quantitative real-time polymerase chain reaction – a fast and inexpensive technique used to copy small segments of DNA – to verify miRNAs in the laryngeal cancer samples.

Of the 800 human miRNAs, 23 were found to be different between the cancerous and normal laryngeal tissue samples.

Among the 23 miRNAs tied to laryngeal cancer through the Henry Ford study, 15 had yet to be reported in head and neck cancer.

With the field narrowed to 23 miRNAs in laryngeal cancer, it presents researchers with the opportunity to quantify each piece of RNA and further study miRNAs in head and neck cancer, notes Dr. Chen.

The NIH-funded head and neck squamous carcinoma cohort for Detroit, with over 1,000 primary patients, includes more than 200 laryngeal sites, giving Henry Ford researchers the opportunity to look at miRNA expression in a larger group of laryngeal cancers as well as in other head and neck cancer sites.

Along with Drs. Chen and Worsham, study co-authors from Henry Ford are Josena K. Stephen, M.D.; Shaleta Havard; Veena Shah, M.D.; Glendon Gardner, M.D.; and Vanessa G. Schweitzer, M.D.

Research Support: NIH grant R01DE15990.

Krista Hopson | EurekAlert!
Further information:
http://www.hfhs.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>