Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart damage after chemo linked to stress in cardiac cells

22.05.2012
Blocking a protein in the heart that is produced under stressful conditions could be a strategy to prevent cardiac damage that results from chemotherapy, a new study suggests.

Previous research has suggested that up to a quarter of patients who receive the common chemotherapy drug doxorubicin are at risk of developing heart failure later in life. Exactly how that heart damage is done remains unclear.

In this study, scientists identified a protein called heat shock factor-1 (HSF-1) as a likely source of chemotherapy-related heart damage in mice and cell cultures. Heat shock factor-1 is known to be induced by stress - in this case, the chemotherapy treatment itself.

"We have found that a simple stress-related factor could be aggravating chemotherapy's effect on the heart," said Govindasamy Ilangovan, associate professor of internal medicine at Ohio State University and senior author of the study. "The results are leading us toward the idea that any additional stress could hurt the heart more than what chemotherapy itself can do."

The researchers gave doxorubicin to two sets of mice - normal animals and mice that were genetically altered so they could not produce HSF-1. Mice without HSF-1 had healthier hearts and lived longer after the chemotherapy treatment than did normal mice.

A closer examination on the cellular level suggested that when HSF-1 is blocked in the heart, this condition allows for the activation of a gene that produces a protein to pump the chemo medicine out of heart muscle cells, preventing these cells from dying.

Ilangovan and colleagues are working to design drugs that could selectively inhibit HSF-1 in the heart as a potential additional therapy for cancer patients undergoing chemo treatment.

The research appears this week in the Proceedings of the National Academy of Sciences Online Early Edition.

Chemotherapy targets cancer cells, but it also can kill many other kinds of cells in various organs. In most cases, Ilangovan explained, organs can regenerate their cells after this damage has occurred. But cardiomyocytes, or heart muscle cells, cannot be regenerated. The loss of muscle can lead to a disorder known as dilated cardiomyopathy, which reduces the heart's pumping action and leads to heart failure.

"This work arose from that background. We are trying to identify a factor that can be targeted to prevent the cardiomyopathy," said Ilangovan, an investigator in Ohio State's Davis Heart & Lung Research Institute.

Previous research had already shown that doxorubicin leads to activation of HSF-1 in the heart. The Ohio State researchers ran a number of experiments in animals and cell cultures to establish the relationship after chemo treatment between heat shock factor-1 and the gene that helps the heart, called multidrug-resistance-1 or MDR1.

In analyses using heart muscle cells from mice with and without activation of HSF-1, the researchers observed more activation of the MDR1 gene in cells lacking the HSF-1 protein compared to normal mouse heart cells. In addition, they demonstrated that the MDR1 gene prompted production of a protein on these heart cells' surface that actually pumped doxorubicin away from the cells.

"This was an exciting finding. When we knock out the protein, not only is the cell death pathway prevented, but it also induces a multidrug-resistant gene, which pumps the drug away from the cells," Ilangovan said. "So when HSF-1 gets activated by chemo, that leads to cardiomyocyte death. But if we knock it out, that gene comes and protects the heart."

The researchers discovered that interplay in the heart cells between HSF-1 and another protein, NF-kB, could be traced to production of the protective gene.

"They're sort of antagonizing each other. If HSF-1 is lower, the other protein becomes dominant. They compete for the same binding site, and when we knock out HSF-1, NF-kB can go freely bind and activate the MDR1 gene," Ilangovan said. That also means that when HSF-1 is present, it inhibits NF-kB and in turn prevents the protective gene from being activated.

Mice also survived longer after a doxorubicin treatment if they did not produce HSF-1, and images of their hearts showed that chemo-related damage to the heart was reduced in the genetically altered mice compared to normal mice.

The researchers also tested breast cancer cells to be sure that brief silencing of the HSF-1 protein before chemotherapy would not induce the multidrug-resistant gene in those cells, which could be a deadly turn of events.

Proper timing of HSF-1 inhibition and limiting this inhibition to the heart are important steps in designing drugs to target it, Ilangovan said. Multiple studies of this protein have suggested that it can have both beneficial and harmful effects in the body. Researchers appear to be reaching consensus that the timing of its activation helps determine which effect it will have - if it is activated before an injury or other damaging event, HSF-1 can be protective. After an injury - in this case, doxorubicin treatment - the protein is more commonly found to be harmful.

"I foresee that perhaps a patient would take a drug to silence HSF-1 in the heart one or two days before chemotherapy. So until the chemo is cleared out, the protein would be in the knock-down stage and no damage to the heart would occur," Ilangovan said.

This work is supported by grants from the National Institutes of Health.

Co-authors of this study include Karthikeyan Krishnamurthy, Kaushik Vedam and Ragu Kanagasabai of the Department of Internal Medicine and Lawrence Druhan of the Department of Anesthesiology, all at Ohio State.

Contact: Govindasamy Ilangovan, (614) 292-9064; govindasamy.ilangovan@osumc.edu

Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Govindasamy Ilangovan | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>